Lecture 12
Factorized S matrix

What is integrability? In classical mechanics there is an exhaustive criterion: a conservative nonde-
generate Hamiltonian system with n degrees of freedom (g;, p;) is integrable, if it satisfies the hypotheses
of the Liouville theorem, i.e. it possesses exactly n independent first integrals of motion I;, which are
in involution, and the Jacobian 9(I)/d(p) # 0. In classical field theory there is no universal criterion,
since the Liouville theorem cannot be generalized to infinite number of degrees of freedom. There are,
nevertheless, partial criteria, like existence of an LA pair, bi-Hamiltonian structure etc. In quantum
mechanics we expect that the system is integrable, if the underlying classical system is integrable, and
the integrals of motion preserve in the quantum case. Nevertheless, there are many quantum systems
that do not have classical counterpart. Probably, the most general integrable systems are those that can
be described by Skyanin’s separation of variables procedure. Nevertheless, there are also limitations for
this construction. In the quantum field theory there is no conventional criterion. A partial (necessary,
but not sufficient) criterion is the existence of an infinite number of integrals of motion.

Now we will see that an infinite set of integrals of motion impose serious restriction on a relativistic
field theory, which seem to be sufficient for integrability.

Any relativistic system in two dimensions, either integrable or non-integrable, possesses at least two
integrals of motion: energy and momentum. In two dimensions it is more convenient to consider the
currents [+, = E+ P, which possess Lorentz spin +1. Consider an in- or out-state |16, ..., ANON)in/out,
which consists of N stable particles with internal states «; and rapidities #;. Then it is evident that

N

E +0;
Ii1|a1615"'7aN0N>in/out = Me, €

=1

a1917~--aaN0N>in/out~ (1)

For simplicity consider a model, which contains particles of the same mass and, which forms a
multiplet of the symmetry group of the theory. For example, sine-Gordon model with 32 > 1/2 satisfies
this condition. Consider a scattering process. The eigenvalues of integrals of motion on the allowed out-
and in-state must coincide. Hence,
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where variables with primes correspond to the out-state. Let N = N’ = 2 (the 2 — 2 scattering).
Consider the equality as an equation on 61,0y with given 67, 6}. This equation has just two solutions:
1 = 601,05, =05 and 0] = 05,0, = 0;. We may assume the first solution, since the second one can be
reduce to the first one by exchanging o < af.
Suppose that there are more integrals of motion I;, where s is the spin. In the case of sine-
Gordon/Thirring model there are no integrals of motion of even values of spin, and there is just one
integral of motion for each odd value of spin. Integrals of motion are supposed to be local, i.e. have the

form
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Note that the spin of 57 is s+ 1, while of 57 is s—1. In the in-state particles are placed far from each other
and the eigenvalue of I, splits into a sum of one-particle eigenvalues. But the one-particle eigenvalue
must be proportional to e5?. We have
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Then we have for the N — N’ process
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Again, consider this as a set of equations on {6;} for given {#;}. If N/ > N an infinite set of such equations
has solutions for an N-dimensional region of values of ., if N = N’. The solutions are evident:
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Surely, for more general models we need more accurate consideration, but in general we may assume
that a model is integrable, if it has an infinite number of commuting integrals of motion such that they
do not allow arbitrary multiple particle production and uniquely define the momenta of ingoing particles
by outgoing and vice versa. For relativistic systems it usually means that the numbers of particles of
each mass conserve after scattering, and the momenta of particles remain unchanged.

Assumption of factorized scattering. The amplitude of scattering of N particles into N particles
factorizes in a product of pairwise scatterings of particles in any order with summing over intermediate
states.

Graphically we may represent it as follows:
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In principle, the factorized scattering assumption can be checked order-by-order in perturbation
theory. But we substantiate it in other way. Suppose that the interaction of particles is short-range in
the following meaning. The stationary wave function of N particles (we will consider bosons) becomes
nearly equal to a combination of products of plane wave if all particles are distant enough from each
other: |z; — x;| > R (Vi, j) with some interaction radius R. This wave function reads:
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if 2o, <o, < - <o, |zi—z;>R. (8)

It is easy to check that the function 4 is antisymmetric with respect to permutations of pairs (o, ;).
The parameters 3; numerate somehow internal states of particles.
Transposition of two particles corresponds to their scattering:
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3132 is the two-particle scattering
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matrix. There are two equations the S matrix, which follow from this 'definition.
First, apply the equation @D twice:

Here s’ is the permutation of two subsequent indexes and S(p’,p)
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Hence, the S matrix must satisfy the unitarity property:
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Note that the name ‘unitarity’ is lame: it does not mean the unitarity in the physical sense. It is simply
a consistency condition, which must be satisfied even for a nonunitary theory.

Let us rewrite equation in an indexless form. To do it let us assume that the matrix S;;(p,p’)
acts on the tensor product V; ® Vo ® --- ® Vv of internal spaces of N particles as follows. It acts as



the unit operator on Vi, k # 4,7 and as S(p,p’) on the tensor product V; ® V;. Note that S;;(p,p’) is
generally not the same as Sj;(p,p’). If we introduce the transposition operator P, we may say S;;(p,p’) =
P,;;S;i(p,p")P;j. Besides, below we will need the charge conjugation operator C, which will be denoted
as C}, if acting on V.

With this notation the unitarity condition reads

S12(p1,p2)S21(p2, p1) = L. (11)

It also can be expressed graphically:
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Another equation is obtained from the following argument. Suppose that we want to change the
order of the particles, e.g. 123 — 321. We can do it in two ways:
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The first way leads to the equation
A0 391 = Y S (py, pa) ST (pr, ps) SEE (D, pa) AP P (123, (13)
1,725,773
or, in the indexless form,
Azar... = S12(p1,p2)S13(P1, p3)S23(p2, p3) Ar23...- (14)

It can be presented in a graphic form:
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The second way leads to

A2 [321 . = Y S92 (py, pa) S 3 (p1, pa) 3R (p1, p2) AT [123 ., (15)
1,725,773

or
Asor... = S23(p2, p3)S13(p1, p3)S12(p1, p2) A12s..., (16)
or graphically
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The condition that both way lead to the same result is called Yang—Baxter equation, which reads
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or
S12(p1, p2)S13(p1, P3)S23(p2, p3) = S23(p2, p3)S13(P1, P3)S12(P1, P2) (18)
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There is one more equation, which follows from relativistic invariance and is well-known in the
perturbation theory, the crossing symmetry. It is better to write it from the very beginning in the

graphical form:
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where crosses mean the charge conjugation C. Explicitly, we may write
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S1a(p1,p2) = Cy ' Sa1(p2, —p1)Co. (22)

In the relativistic case it is convenient to use the rapidities 6;, so that S(p1, p2) = S(6; — 63). Then these
properties read:

1. Yang—Baxter equation

S12(01 — 02)S13(61 — 03)Sa23(02 — 03) = Sa3(02 — 03)S13(61 — 05)S12(01 — 02). (23)
2. Unitarity
S19(0)Sa1 (—0) = 1. (24)
3. Crossing symmetry
S12(0) = C5 1S9y (im — 6)Cs. (25)

The bootstrap equations f are very restrictive. In many cases they make it possible to find
the S matrix, maybe up to some parameters. The variable § = 6; — 65 is related to the Mandelstam
variable s according to

s =m3 +m3 + 2mime ch . (26)

It is easy to check that the physical sheet is
0<Imé <. (27)

The point 6 = in corresponds to the branching point s = (m; —mgz)?, while the point 6 = 0 corresponds
to the branching point s = (mj +ms)?. The real axis and the line Im § = 7 correspond to the right and
left cuts in the s plane correspondingly. On the imaginary axis 6 = iu the S matrix is real, and a pole
on the segment u € (0, 7) corresponds to a bound state, if its residue in w is positive.



In the case of sine-Gordon model the basic particles are soliton and antisoliton, which are charge and
U(1) symmetric. The only admissible form is
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Here a(6),b(0), c(0) are three analytic functions. By substituting this form into the Yang—Baxter equation

we obtain
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Consistency with the crossing symmetry

a(f) = b(ir — 0), c(0) = c(ir — 0)

requires
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The unitarity condition reduces to
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Solution to the equations , is not unique. Nevertheless, we may obtain a unique solution by
imposing the following conditions

1. The solution is a meromorphic function of 6 on the plane and of p on the half-plane Rep > 0.

2. There are no poles of the S matrix on the physical sheet except the segment (0, i) of the imaginary
axis, and there is no poles at all for p > 1.

3. a(0) = —1, which reflects the fact known from the classical theory that two solitons cannot have
the same momentum. In this case S(0) = —P and it can be shown that the wave function
vanishes.

This only solution is
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which differs from the function S(6) of the Lecture 11 by the sign. It mean that the S matrix defined by
7, is the .S matrix of bosons corresponding to the Thirring fermions. In one spacial dimension
there is no physical difference between bosons and fermions. But it does not mean that the interaction
between fermions and between bosons must be the same. For example, the free Majorana fermion can
be described as a system of interacting bosons, generated by the order (or disorder) parameter. The S
matrices of bosons and fermions differ by the overall sign.
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