
Lecture 11
Solving massive Thirring model by Bethe Ansatz: thermodynamic limit

On the last lecture we derived the Bethe equation for N pseudoparticles

p0(λk)L+

N∑
l=1

Φ(λk − λl) = 2πnk, nk ∈ Z +
δ

2
. (1) BetheEquation-log

Today we will use it to describe the true vacuum of the system and excitations above the vacuum. The
Bethe equation is a system of nonlinear algebraic equations so that it is probable impossible to solve it
analytically. For the Thirring model there is no need to solve them for arbitrary finite N , since we are
only interested in the limit N →∞. In principle, this limit is achieved by sending to infinity the cut-off
scale Λ, and we may consider arbitrary values of L. In fact, here we will only discuss the case of large
enough L, namely L� m−1, where m is the physical mass of excitations.

When g = 0 the vacuum had the following structure. The parameters λk lied on the axis R + iπ, so
that λk = iπ + βk. It corresponded to the negative energy ‘excitations’. Besides, the negative energy
band was full, so that we could write nk = −k+ const . In the limit L→∞ the roots βk became dense.
Note that in this dense case the answer is not sensible (in the leading approximation) to the periodicity
condition (NS or R). Suppose that this structure is preserved for small enough values of g. Then for the
vacuum solution we have

p0(βk)L =

N∑
l=1

Φ(βk − βl) + 2πk + const .

Let us take a difference of two these equations with neighboring values of k:

p0(βk+1)− p0(βk) =
1

L

N∑
l=1

(Φ(βk+1 − βl)− Φ(βk − βl) +
2π

L
.

Define the density of roots for the vacuum solution:

ρ(βk) =
1

L(βk+1 − βk)
.

If roots are dense, we may write f(λk+1)−f(λk) = f ′(λk)(λk+1−λk) for any slowly changing function f .
Hence,

p′(βk) =
1

L

N∑
l=1

Φ′(βk − βl) + 2πρ(βk).

Finally substitute the sum by and integral with the measure dl = Lρ(βl) dβl:

p′(β) = 2πρ(β) +

∫ Θ

−Θ

dγ Φ′(β − γ)ρ(γ) for −Θ ≤ β ≤ Θ. (2) BetheEquation-continuous-vac

The parameter β0 is related to the cut-off parameter Λ:

Λ =
m0

2
eΘ. (3) Lambda-Theta-rel

On the other hand, it is related to the spacial density of pseudoparticles in the vacuum state:

N

L
=

∫ Θ

−Θ

dβ ρ(β). (4) N-Theta-rel

We do not intend to solve the equation (2) since it only gives the vacuum energy, which we are not
interested in. It can be shown that

ρ(β) ∝ exp
β

1 + g
, (5) rho-fin
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but it will not help us. We will be interested in excitations. There is a large zoo of excitations in this
theory, but we will consider the simplest kind of them: holes. Consider the state in which λk = iπ + βk,
βk ∈ R, as before, but the values nk do not form a solid segment, but have some omissions.

Return for a moment to the general equation (1). Let {λk} be a given solution, and {nk} is the
corresponding set of integers (or half-integers). Then define the function λ(n) as a solution to the
equation

π(λ(n))L+

N∑
l=1

Φ(λ(n)− λl) = 2πn. (6) lambda(n)-def

If n = nk the value of the function coincides with the corresponding root: λ(nk) = λk.
Return to our dense states. If we order the set of nk in such a way that nk+1 < nk, we may define

the density of states ρ(β) and the density of roots ρr(β):

ρ(β(n)) =
1

L(β(n+ 1)− β(n))
, ρr(β(nk)) =

1

L(βk+1 − βk)
. (7) rho-rhor-def

We also may define the density of holes

ρh(β) = ρ(β)− ρr(β). (8) rhoh-def

It is easy to write the integral equation for such a state

p′(β) = 2πρ(β) +

∫ Θ

−Θ

dγ Φ′(β − γ)(ρ(γ)− ρh(γ)) for −Θ ≤ β ≤ Θ. (9) BetheAnsatz-continuous-holes

It is important that ρ(β) is the unknown, while ρh(β) is a free parameter. We may choose any function
ρh(β) if only the solution will satisfy ρ(β) ≥ ρh(β). For example, the choice ρh(β) = L−1δ(β − β0)
corresponds to the state with a single hole of rapidity β0.

Let ρ0(β) be the vacuum density of states, i.e. the solution to the equation (2) and ρ(β) = ρ0(β)+δρ(β)
be the solution to the equation (9) with a given density of holes ρh(β). By taking the difference of these
two equations we obtain

2πδρ(β) +

∫ Θ

−Θ

dγ Φ′(β − γ)δρ(γ) =

∫ Θ

−Θ

dγ Φ′(β − γ)ρh(γ). (10) deltarho-eq

Note that δρ(β) is not supposed to be small.
Now let us solve the equation. It turns out that it is sufficient to solve it for Θ =∞. In this case we

may apply the Fourier method. Let

Φ̃′(ω) =

∫ ∞
−∞

dβ Φ′(β)eiωβ = −2π
shπgω

shπω
, (11) Phi’-Fourier

δρ̃(ω) =

∫ ∞
−∞

dβ δρ(β)eiωβ , ρ̃h(ω) =

∫ ∞
−∞

dβ ρh(β)eiωβ . (12) rho-Fourier

After the Fourier transform equation (10) reads

2πδρ̃(ω) + Φ̃′(ω)δρ̃(ω) = Φ̃′(ω)ρ̃h(ω). (13) deltarho-eq-Fourier

It solution is given by

δρ̃(ω) = − shπgω

2 sh π(1−g)ω
2 ch π(1+g)ω

2

ρ̃h(ω). (14) deltarho-solution

Suppose that ρ̃h(ω) does not have poles in a large enough strip around the real axis. In particular, for a
finite number of holes this function has no poles at all. Compute the energy (comparing to the vacuum
energy) and momentum of the state:

E = L

∫ Θ

−Θ

dβ ε0(β)(ρh(β)− δρ(β)),

P = L

∫ Θ

−Θ

dβ p0(β)(ρh(β)− δρ(β)) shβ.

(15) energy-momentum-rhoh
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Consider the case g < 0. In this case these integrals are convergent as Θ→∞, and we easily obtain that
for Θ =∞

E + P = m0L(ρ̃h(i)− δρ̃(i)) = 0, E − P = m0L(ρ̃h(−i)− δρ̃(−i)) = 0.

In fact, surely, the energy and momentum are nonzero due to finiteness of Θ. It can be shown that

E = L

∫ Θ

−Θ

dβ ρh(β)ε

(
β

1 + g

)
, P = L

∫ Θ

−Θ

dβ ρh(β)p

(
β

1 + g

)
, (16) EP-fin

where ε(θ), p(θ) are energy and momentum of physical excitations:

ε(θ) = m ch θ, p(θ) = m sh θ, (17) ep-phys

m =
m0

g
ctg

(
π

2

1− g
1 + g

)
e

g
1+gΘ ∼ m0

(m0

Λ

)− g
1+g

. (18) m-phys

Comparing with the case g = 0 we conclude that this excitation is an antifermion1 We see that the
rapidity is renormalized in consistency with the density of states (5).

Nevertheless, here we have a problem. We have concluded in (18) that the physical mass is related to
the bare mass as m ∼ m0(m0/Λ)g/(1+g) ∼ m0(m0r)

g/(1+g). But this contradicts the relation obtained
by the boson–fermion correspondence:

m ∼ m0(m0r)
1

2(1−β2)
−1 ∼ m0(m0r)

− g
1+2g .

The formula (18) would be obtained if we assumed g = 1 − 2β2 instead of g = (2β2)−1 − 1. We may
conjecture that the coupling constant g in the Bethe Ansatz, being based on the anticommutation relation
for fermions, differs with that of obtained from operator product expansion due renormalization of the
fermion. If we denote the coupling constant in Bethe Ansatz by gBA and that used in the boson–fermion
correspondence by gOPT, we get

gBA =
gOPE

1 + gOPE
. (19) g-BA-OPE

In fact, after assuming this relation all results of the Bethe Ansatz and of the conformal perturbation
theory become consistent.

Can we say anything about interaction of the antifermions? Yes. To extract this information, consider
an auxiliary model of spinless fermions of mass m with the wave function of the form

χθ1...θN (x1, . . . , xN ) =
∑
τ∈SN

(−1)στAτ

N∏
k=1

eimxσk sh θτk , if xσ1
< · · · < xσN .

The constants Aτ are related as
A...ij... = S−1(θi − θj)A...ji..., (20) A=SA

where S(θ) is a given function, which play a role of the S matrix of two particles. In fact, this model is an
approximation to system of physical fermions in a strong external field, which suppress their antifermions.
As we will see below, wave functions with such long-distance asymptotics are characteristic for integrable
systems.

Imposing the periodicity condition produces the Bethe equation

eip(λk)L = ±
N∏
l=1

(l 6=k)

S(θk − θl). (21) BE-S

Let
S(θ) = eiΨ(θ). (22) S-Psi

1Note that if we try to obtain the fermion as a pseudoparticle with real λ, we will fail. For indefinitely small though
nonzero g the pseudoparticle repulse states in the vicinity of λ + iπ, and we obtain a fermion-antifermion bound state
instead. The construction of the fermion is more involved.
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In the limit of dense roots we obtain

p′(θ) +

∫ ∞
−∞

dϑΨ′(θ − ϑ)ρp(ϑ) = 2πρs(ϑ). (23) BetheEquation-continuous-S

Let δρs(θ) = ρs(θ)− 1
2πp
′(θ). Then we get

δρs(ϑ) =
1

2π

∫ ∞
−∞

dϑΨ′(θ − ϑ)ρp(ϑ). (24) deltarhos-S

After applying the Fourier transform

ρ̃p(t) =

∫ ∞
−∞

dθ ρp(θ)e
itθ etc.

we obtain

δρ̃s(t) =
1

2π
Ψ̃′(t)ρ̃p(t).

If we assume that these particles correspond to holes in the Bethe Ansatz solution to the Thirring
model, then the density of such particles ρp(θ) is proportional to the density of holes ρh(β), while the
density of states ρs(θ) is proportional to the density of roots ρ(β):

ρp(θ) = (1 + g)ρh((1 + g)θ), ρs(θ) = (1 + g)ρ((1 + g)θ). (25) rho-rel

In terms of Fourier components we have

ρ̃p(t) = ρ̃h

(
t

1 + g

)
, δρ̃s(t) = δρ̃

(
t

1 + g

)
. (26) tilderho-rel

Hence,

δρ̃

(
t

1 + g

)
=

1

2π
Ψ̃′(t)ρ̃h

(
t

1 + g

)
By substituting (14) we obtain

Ψ̃′(t) = −2π
shπ πgt

1+g

2 sh π(1−g)t
(1+g) ch πt

2

. (27) Psi’-solution

Substituting g by 1− 2β2 and using the parametrization

β2 =
p

p+ 1
,

we obtain

S(θ) = exp

(
−
∫
dt

t

sh πt
2 sh π(p−1)t

2

shπt sh πpt
2

e−iθt

)
= exp

(
2i

∫
dt

t

sh πt
2 sh π(p−1)t

2

shπt sh πpt
2

sin θt

)
. (28) S-fin

Note that it is the S matrix, which describes the scattering of two antifermions into two antifermions
S(θ)−−−−. Due to the charge symmetry of the model it coincides with the scattering of two fermions int
two fermions S(θ)++

−−. Due to the crossing symmetry of amplitudes it also provides the matrix elements
S(θ)+−

+− and S(θ)−+
−+:

S(θ)++
++ = S(θ)−−−− = S(θ), S(θ)+−

+− = S(θ)−+
−+ = S(iπ − θ) = S(θ)

sh θ
p

sh iπ−θ
p

. (29) 4S-fin

To obtain the whole S matrix we have to learn more about general properties of integrable systems.
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Problems

1. Derive (16)–(18).
2. Calculate the change of the number of states in the interval [−Θ,Θ] under the influence of holes:

δn =

∫ Θ

−Θ

dβ δρ(β).
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