
Lecture 8
Chiral components and fermion-boson correspondence

Consider the free boson

ϕ(z, z̄) = Q− 2iP log zz̄ +
∑
k 6=0

αkz
−k + ᾱkz̄

−k

ik
. (1)

Its correlation function

〈ϕ(z′, z̄′)ϕ(z, z̄)〉 = 2 log
R2

(z′ − z)(z̄′ − z̄)
formally splits into a some of right and left parts. Suppose that the very field splits as

ϕ(z, z̄) = ϕ(z) + ϕ̄(z̄) (2)

into two fields with correlation functions

〈ϕ(z′)ϕ(z)〉 = 2 log
R

z′ − z
, 〈ϕ̄(z̄′)ϕ̄(z̄)〉 = 2 log

R

z̄′ − z̄
, 〈ϕ̄(z̄′)ϕ(z)〉 = 0. (3)

These correlation functions are multivalued functions, which reflects the nonlocal nature of these opera-
tors. The expression (1) cannot be split according to (2). To do so introduce the operators P±, Q± with
the only nonzero commutation relations

[P±, Q±] = −i. (4)

Let
ϕ(z) = Q+ − 2iP+ log z +

∑
k 6=0

αk
ik
z−k,

ϕ̄(z̄) = Q− − 2iP− log z̄ +
∑
k 6=0

ᾱk
ik
jz̄−k,

(5)

The corresponding vacuum |p+, p−〉 is defined as

αk|p+, p−〉 = ᾱk|p+, p−〉 = 0 (k > 0),

P+|p+, p−〉 = p+|p+, p−〉, P−|p+, p−〉 = p−|p+, p−〉.
(6)

The operators α−k, ᾱ−k (k > 0) produce the Fock space, which we will denote Fp+ ⊗ F̄p− . The field
ϕ(z, z̄) is defined according to (2) on the space

Hfree boson =
⊕
p

Fp ⊗ F̄p,

where the actions of P+ and P− coincide and can be identified with the action of P , and we may assume
Q = Q+ +Q−. Indeed, |p, p〉 = eip(Q++Q−)|0, 0〉 is consistent with this assumption.

It is useful to introduce the dual field

ϕ̃(z, z̄) = ϕ(z)− ϕ̄(z̄). (7)

It can be easily shown that
εµν∂νϕ = −∂µϕ̃. (8)

where εµν is the 2-form (ε01 = −ε10 = 1), or

∂1ϕ = −∂0ϕ̃, ∂0ϕ = −∂1ϕ̃.

Hence,

ϕ̃(x) = −
∫ x

dy1 ∂0ϕ(y) = −
∫ x

dyµ εµν∂
νϕ(y). (9)
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For the free field theory the integral is contour independent as long as it does not cross a point, where
another field is located.

The exponential operators :eipϕ(z): and :eipϕ̄(z̄): and defined in the same way as for the full field.
But the corresponding correlation functions are generally multivalued:〈 x

N∏
i=1

:eipiϕ(zi):

〉
=

{∏N
i>j(zi − zj)2pipj , if

∑
pi = 0;

0, otherwise.
(10)

Now consider the fields

V±(z) = :e
± i√

2
ϕ(z)

: , V̄±(z̄) = :e
± i√

2
ϕ̄(z̄)

: . (11)

Consider the operator product

V+(z′)V+(z) = (z′ − z) :e
i√
2

(ϕ(z′)+ϕ(z))
: = −V+(z)V+(z′).

The operators V+ (and, similarly, V−) behave like fermions. Let us try to check this conjecture. Consider
the product

V−(z′)V+(z) = (z′ − z)−1 :e
i√
2

(ϕ(z)−ϕ(z′))
: = −V+(z)V−(z′).

Well. But there is a pole here. What happens at the pole? Expand the product:

V−(z′)V+(z) = (z′ − z)−1 :e
i√
2

(ϕ(z)−ϕ(z′))
: = (z′ − z)−1 − i√

2
∂ϕ(z) +O(z′ − z).

First consider the singular part. In the product V−(z′)V+(z) is it assumed that the first operator is in
the Euclidean future of the second: x′2 > x2. So that we may take z′ = x′1 + i0, z = x1. Then we have

1

z′ − z
=

1

x′1 − x1 + i0
=

1

x′1 − x1
− iπδ(x′1 − x1).

Hence,
[V+(x0, x′1), V−(x0, x1)]+ = −2πiδ(x′1 − x1),

[V̄+(x0, x′1), V̄−(x0, x1)]+ = 2πiδ(x′1 − x1).
(12)

We see that the operators V+ and V− are not mutually Hermitian conjugate.
If we define the product (V−V+)(z) as the average of V−(z+ εeiθ)V+(z) over the value of the angle θ,

(V−V+)(z) =

∫ 2π

0

dθ

2π
V−(z + εeiθ)V+(z) =

∮
dz′

2πi

V−(z′)V+(z)

z′ − z
,

the first term will vanish, and we will obtain

(V−V+)(z) = − i√
2
∂ϕ(z) = − i√

2
∂ϕ(z, z̄). (13)

Similarly

(V̄+V̄−)(z) =
i√
2
∂̄ϕ̄(z̄) =

i√
2
∂̄ϕ(z, z̄). (14)

Introduce the notation
jztop = 2∂̄ϕ̃ = −2∂̄ϕ = 2i

√
2(V̄+V̄−),

jz̄top = 2∂ϕ̃ = 2∂ϕ = 2i
√

2(V−V+).
(15)

These two fields look just like components of the conserved current

jµtop = εµν∂νϕ = −∂µϕ̃, ∂µj
µ = 0. (16)

The corresponding charge is

q =

∫ ∞
−∞

dx1 j0 =

∫ ∞
−∞

dx1 ∂1ϕ = ϕ(x0,+∞)− ϕ(x0,−∞). (17)
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We will call them topological charge and topological current due to the reason, which will be clear later.
Now notice that the topological charge will be conserved even in a perturbed theory, if perturbation
potential prevents change of the field at infinity.

Now continue checking fermionic nature of the fields V±, V̄±. Consider the product

Vα(z′)V̄β(z) = :e
i√
2

(αϕ(z′)+βϕ̄(z))
: = V̄β(z)Vα(z).

They behave like bosons despite our hopes. What to do? Let us introduce two algebraic elements η1, η2,
which form a Clifford algebra

[ηi, ηj ]+ = 2δij . (18)

The operators
Ψ±(z) = η1V±(z), Ψ̄±(z̄) = η2V̄±(z̄), (19)

anticommute:

[Ψα(z′),Ψβ(z)]+ = [Ψ̄α(z̄′), Ψ̄β(z̄)]+ = [Ψα(z′), Ψ̄β(z̄)]+ = 0 (z′ 6= z, z̄′ 6= z̄).

But we cannot get away with introducing the algebraic elements ηi. We should extend the space of states
by tensor multiplication by a representation of the Clifford algebra. Let

c =
η1 − iη2

2
, c+ =

η1 + iη2

2
. (20)

Then [c+, c]+ = 1, [c, c]+ = [c+, c+]+ = 0. Define the states |0〉η, |1〉η as

c|0〉η = 0, |1〉η = c+|0〉η. (21)

In this basis

η1 =

(
1

1

)
= σ1, η2 =

(
i

−i

)
= −σ2. (22)

We may say that the total space of states is (C2)η ⊗
⊕

p+,p−
Fp+ ⊗ F̄p− .

We may suspect that Ψ±, Ψ̄± is a system of two Majorana fermions or, equivalently, a Dirac fermion.
Indeed, if we consider the Dirac action

S0[ψ, ψ̄] =
i

π

∫
d2x ψ̄γµ∂µψ. (23)

The difference from the Majorana action is that the field ψ is complex and that the coefficient at the
action is twice as large. The complexity of ψ leads to the existence of the current

jµ =
1

π
ψ̄γµψ, (24)

whose charge is the fermion number. It is easy to check that

jz = − 2

π
ψ+

2 ψ2, jz̄ =
2

π
ψ+

1 ψ1. (25)

We may conjecture that the current jµ and the topological current jµtop are proportional. Comparing

with (15) (with V± substituted by Ψ±) we see that in this case it is logical to identify ψ1, ψ
+
1 , ψ2, ψ

+
2

with Ψ−,Ψ+, Ψ̄+, Ψ̄−. By comparing with the commutation

[ψ+
i (x0, x′1), ψj(x

0, x1)]+ = πδijδ(x
′1 − x1), (26)

we obtain

ψ1 =
i1/2√

2
Ψ+, ψ+

1 =
i1/2√

2
Ψ−,

ψ2 =
i−1/2

√
2

Ψ̄−, ψ+
2 =

i−1/2

√
2

Ψ̄+.

(27)
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The same factor i1/2 in ψ1 and ψ+
1 is related to the fact that Ψ+ and Ψ− are not mutually conjugate, as

we have already mentioned. With the identification (27) we have

jµtop = 2
√

2πjµ. (28)

And now we arrived to the most interesting point. Calculate the operator

ψ̄ψ = ψ+γ0ψ = −i(ψ+
1 ψ2 − ψ+

2 ψ1) = − i

2
(Ψ+Ψ̄+ + Ψ−Ψ̄−) = −iη1η2 :cos

1√
2
ϕ: .

This identity is crucial for establishing the correspondence between the free massive fermion and the
sine-Gordon model at a special point. The action of the massive free Dirac fermion is

S[ψ, ψ̄] =
1

π

∫
d2x ψ̄(iγµ∂µ −m)ψ = S0[ψ, ψ̄] + S1[ψ, ψ̄], S1[ψ, ψ̄] = −m

π

∫
d2x ψ̄ψ. (29)

We will consider S1 as a perturbation and define the correlation functions as

〈X〉 =

〈
XeiS1[ψ,ψ̄]

〉
0〈

eiS1[ψ,ψ̄]
〉

0

= 〈X〉0 + i (〈XS1〉0 − 〈X〉0〈S1〉0) + · · · . (30)

According to (29) the perturbation action can be rewritten as

S1 =
im

π
η1η2

∫
d2x :cos

1√
2
ϕ: . (31)

Since any correlation function must contain an even number of ηi, we may fix a vacuum |0〉η or |1〉η. We
have η1η2|0〉η = −i|0〉η, η1η2|1〉η = i|1〉η. Choose, for example, |0〉η. Then

S1||0〉η =
m

π

∫
d2x :cos

1√
2
ϕ:

and for the total action we get

SSG,β = 1√
2
[ϕ] =

∫
d2x

(
(∂µϕ)2

16π
+
m

π
cos

1√
2
ϕ

)
. (32)

The choice |1〉η would only change the sign at the second term, which would simply change the minimum
of the potential from ϕ = 2

√
2πn to ϕ =

√
2π + 2

√
2πn. Physically, it is absolutely equivalent to what

we have for the |0〉η vacuum.
In classical field theory we know that the spectrum of the sine-Gordon equation

∂2
t u− ∂2

xu+M2 sinu = 0 (33)

consists of two kinds of stable field configurations. The first kind it the topological soliton and antisoliton,
which are static solutions in an appropriate inertial frame and satisfy the conditions

u(t, x)|x1→−∞ = 2πn, u(t, x)|x1→+∞ = 2π(n± 1), (n ∈ Z), (34)

where the sign ‘+’ corresponds to the soliton, while the sign ‘−’ to the antisoliton. They are obtained
by arbitrary Poincaré transformation from static solutions

u(t, x) = 2πn± 4 arctg eMx. (35)

The other type of classical excitation are the so called breathers which have zero topological charge, and
not static in any frame. But there is a frame, where the breather does not move. In such frame it is
given by

u(t, x) = 2πn+ 4 arctg

√
1− ω2 cosMωt

ω ch(M
√

1− ω2x)
, 0 < ω ≤ 1. (36)
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They form a continuous family parametrized by the variable ω. The case ω = 1 corresponds to the
constant solution, while the limit ω → 0 tends to a soliton–antisoliton solution. The quantity Mω is the
oscillation frequency of the breather. If you calculate total energy and momentum of these configurations,
it turns out that the soliton and antisoliton behave like particles of mass 8M , while the breather behaves
like a particle of mass 16M

√
1− ω2. The last can be considered as a soliton–antisoliton bound state.

Here we consider a quantum sine-Gordon model. We may identify u = ϕ/
√

2. The topological
charge q defined in (17) is quantized and is equal to ±2

√
2π for the soliton and antisoliton. Due to the

relation (28) we may think that in the quantum case the soliton corresponds to the fermion of the free
fermion theory. Here the correspondence stops. We find no breather solutions (except the trivial one:
the unbounded fermion–antifermion pair). The parameter m in the action (32) is of dimension of mass
rather than of square of mass. The reason is that we consider the quantum sine-Gordon model at a very
special value the Planck constant. We discuss it in more detail in the next lecture.

We may conclude that the massive free Dirac fermion is equivalent to an extension of the quantum
sine-Gordon model with a special value of the coupling constant (or, equivalently, Planck constant). The
equivalence is established in each order of the perturbation series in the mass m of the fermion/soliton.
On one hand, this equivalence makes it possible to solve the special sine-Gordon model by reducing it to
the free fermion. On the other hand, it allows one to introduce some nonlocal fields into the free fermion
theory, which can be easily expressed in terms of the boson field.

Problems

1. Consider the case m = 0. Show that the operators Sε1ε2(z, z̄) = :e
iε1
2
√

2
ϕ(z)+

iε2
2
√

2
ϕ̄(z̄)

: , εi = ± ≡ ±1
of dimension (1/8, 1/8) generate the Ramond vacuums on the cylinder. By using operator product ex-
pansion from Lecture 4 express them in terms of the operators σ(i)(x), µ(i)(x) (i = 1, 2) related to the two
Majorana fermions ψ(i) defined via the Dirac fermion ψ(x) according to ψ(x) = 1√

2

(
ψ(1)(x) + iψ(2)(x)

)
.

2. Consider a classical boson theory with the action

S[u] =

∫
d2x

(
(∂tu)2 − (∂xu)2

2
− V (u)

)
,

where V (u) possesses a (finite or infinite) set {ui} of degenerate minima: V (ui) = Vmin. The set will be
ordered in such a way that ui < ui+1. Show that any static (time-independent) solution of the equation
of motion u(x) ‘connects’ two neighboring minima: either u(x) → ui as x → −∞ and u(x) → ui+1 as
x→ +∞ or u(x)→ ui+1 as x→ −∞ and u(x)→ ui as x→ +∞.
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