
Lecture 5
Conformal field theory: Virasoro algebra and its representations

Let us try to understand better the Virasoro algebra:

[Lk, Ll] = (k − l)Lk+l +
c

12
k(k2 − 1)δk+l,0. (1)

First of all, let c = 0. In this case the algebra can be realized in terms of differential operators

Lk = −zk+1∂.

An infinitesimal action of a function F (z) looks like

−
∑

εkLkF (z) = F
(
z +

∑
εkz

k+1
)

= F (z + ε(z)). (2)

The function z + ε(z) is a small conformal transformation. Hence, we may conclude that the Virasoro
algebra generates conformal transformations. But not every conformal transformation is a transformation
of the whole plane. Most of them have singularities, and even not single-valued function. Let us restrict
ourselves to transformation that are single-value and have not more than one single pole, including pole
at infinity. More precisely, we will consider single-valued conformal transformation of the sphere C∪{∞}.
These are Möbius transformations:

f(z) =
az + b

cz + d
. (3)

Any Möbius transformation is a composition of three basic transformations:

1. Translation: f(z) = z + b;

2. Dilation: f(z) = az;

3. Inversion: f(z) = z−1.

The translation and dilation transformation are evidently generated by L−1 and L0 correspondingly. But
the inversion cannot be infinitesimal. The corresponding infinitesimal transformation is the composition
of two inversions with a translation in between:

f(z) = (z−1 − ε)−1 =
z

1− εz
= z + εz2 +O(c2).

We see that this transformation is generated by the operator −cL1. Hence the triple of operators
L−1, L0, L1 generate the Möbius transformations. Independently of the central charge this algebra forms
an sl(2) subalgebra

[L1, L−1] = 2L0, [L±1, L0] = ±L±1. (4)

All other operators Lk correspond to transformations that are non-single-valued on the sphere and acquire
an anomaly, which expresses itself as the central charge.

Consider the action of the Virasoro algebra (4) on an operator. Let

δεΦ(z, z̄) =

[∑
k

εkLk,Φ(z, z̄)

]
. (5)

For a primary operator Φ with conformal dimensions (∆, ∆̄) we have

δεΦ(z, z̄) =
∑
k

(k + 1)εkz
k∆Φ(z, z̄) +

∑
k

εkz
k∂Φ(z, z̄)

= ∆ε′(z)Φ(z, z̄) + Φ(z + ε(z))− Φ(z, z̄) = ((z + ε(z))′)∆Φ(z + ε(z), z̄)− Φ(z, z̄).

Taking into account the second chiral part and integrating the transformation we obtain

Φ(z, z̄)→ (f ′(z))∆(f̄ ′(z̄))∆̄Φ(f(z), f̄(z̄)). (6)
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If f(z) and f̄(z̄) are both Möbius transformations, the correlation function must be invariant under this
transformation. For general functions f(z), f̄(z̄) this transforms different surfaces. In particular,

f(z) = i
L

2π
log z, f̄(z̄) = −i

L

2π
log z (7)

maps the Euclidean plane onto the Euclidean cylinder, as we have discussed.
It is important that the operator T (z), being a dimensions (2, 0) operator, is not primary. Indeed,

its operator product expansion

T (z′)T (z) =
c/2

(z′ − z)4
+

2T (z)

(z′ − z)2
+
∂T (z)

z′ − z
+O(1) (8)

contains the central charge term, which is not allowed for a primary operator. We may rewrite it as

[Lk, T (z)] =
c

12
k(k2 − 1)zk−2 + 2(k + 1)zkT (z) + zk+1∂T (z). (9)

We easily obtain

δεT (z) =
c

12
ε′′′(z) + 2ε′(z)T (z) + ε(z)∂T (z). (10)

Integration of this transformation is not so easy, but it results:

T (z)→ (f ′(z))2T (f(z)) +
c

12
{f(z), z}, {f(z), z} =

f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

. (11)

The last bracket is called Schwartz derivative. For the transformation (7) we have {f(z), z} = 1/2z2,
which gives

T (ζ) = −
(

2π

L

)2 (
z2T (z)− c

24

)
. (12)

Hence,

Hcyl =
2π

L

(
L0 + L̄0 −

c

12

)
. (13)

This gives the vacuum energy in the cylinder geometry:

Evac = − πc
6L
, (14)

which is consistent with the free boson and free fermion cases. The advance of this derivation is that it
involves no regularization nor renormalization.

Now let us study highest weight representation. Let |∆〉 be the highest weight vector of the Virasoro
algebra:

Lk|∆〉 = 0 (k > 0), L0|∆〉 = ∆|∆〉. (15)

The Verma module Mc,∆ is the representation freely generated by operators L−k (k > 0). In other
words, it is spanned on the vectors

L−k1L−k2 . . . L−kr |∆〉, 0 < k1 ≤ k2 ≤ · · · ≤ kr, (16)

which are linearly independent. The Verma module is not necessarily irreducible. It may contain a null
vector |χ〉 such that

Lk|χ〉 = 0 (k > 0), L0|χ〉 = (∆ +N)|χ〉, N > 0. (17)

In fact, it is sufficient to demand L1|χ〉 = L2|χ〉 = 0, since Lk ∝ (adL1
)k−2L2 for k > 2.

Note that if such vector exists, it is orthogonal to any other vector in the Verma module and, in
particular, has a zero norm. If

∑
ki = N , we have

(|χ〉, L−k1L−k2 . . . L−kr |∆〉) = 〈∆|Lkr . . . Lk2Lk1 |χ〉 = 0.

If
∑
ki 6= N the scalar product vanishes since it corresponds to different eigenvalues of the Hermitian

operator L0.
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Null vectors generate submodules in the Verma module generated by L−k (k > 0) and the irreducible
representation is obtained by factorizing the Verma module over all such submodules:

Vc,∆ ∼= Mc,∆/{|χi〉 ∼ 0}. (18)

Remark. We may say that in ‘reasonable’ conformal field theories, which pretend to have physical
applications, the space of states must consist of irreducible representations of the Virasoro algebra. In
these theories null vectors are just zero in the physical space of states. Nevertheless, in some intermediate
calculations or mathematical constructions ‘non-reasonable’ theories may be considered, where not only
Verma modules, but also modules conjugate to Verma modules, or even more complicated reducible
representations may appear. In what follows we will discuss ‘reasonable’ or ‘physical’ CFTs, if the
opposite would not be specified explicitly.

For N = 1 there is the only vector L−1|∆〉. It is a null vector if L1L−1|∆〉 = 0. Evidently,

L1L−1|∆〉 = 2L0|∆〉 = 2∆|∆〉.

Hence, L−1|∆〉 is a null vector, if ∆ = 0. Since L−1 acts on every field as ∂, we obtain

∂Φ(z, z̄) = 0 if ∆ = 0;

∂̄Φ(z, z̄) = 0 if ∆̄ = 0.
(19)

Good examples are Ψ(z) and Ψ̄(z̄) in the free fermion theory.
In particular, any operator of dimension (0, 0) is constant. The unit operator is surely constant. If

there is another operator of such dimension, it corresponds to a nontrivial vacuum on the cylinder. If
all fields in a theory have dimensions (0, 0) all correlation functions are constant, and the theory can be
called topological conformal field theory.

Let us find a null vector on the level N = 2. A general level 2 vector has the form (AL−2 +BL2
−1)|∆〉.

We have
L1(AL−2 +BL2

−1)|∆〉 = (3A+ 2(2∆ + 1)B)L−1|∆〉,
L2(AL−2 +BL2

−1)|∆〉 = ((4∆ + c/2)A+ 6∆B)|∆〉.
The equations

3A+ 2(2∆ + 1)B = 0,

(4∆ + c/2)A+ 6∆B = 0

have a solution if ∣∣∣∣ 3 2(2∆ + 1)
4∆ + c/2 6∆

∣∣∣∣ = −16∆2 + 2(5− c)∆− c = 0.

The solutions to these equations are

∆21

∆12

}
=

1

16

(
5− c±

√
(c− 1)(c− 25)

)
. (20)

Note that the dimensions ∆21 and ∆12 are real if either c ≥ 25 or c ≤ 1. Our basic examples of free
boson (c = 1) and free Majorana fermion (c = 1/2) lay in the second region. As we shall see below the
region c < 1 corresponds to the so called generalized minimal conformal models, while the region c ≥ 25
describes the Liouville theory.

The formula looks complicated. Nevertheless, in appropriate variables it becomes simple. Parametrize
the central charge by the parameter b:

c = 1 + 6(b+ b−1)2. (21)

We have c ≥ 25 for real b and c ≤ 1 for purely imaginary b. Parametrize the conformal dimension by
the parameter α:

∆α = α(Q− α). (22)

Let

αmn =
1−m

2
b−1 +

1− n
2

b, ∆mn = ∆αmn
. (23)

In particular ∆11 = 0 while ∆21,∆12 coincide with those defined in (20).
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Theorem (V. Kac, 1979). A Verma module Mc,∆ has a level N null vector, if and only if ∆ = ∆mn

with mn = N .

We have seen that the existence of a level 1 null vector lead to a differential equation (19). In fact,
it is a differential equation for correlation functions:

∂

∂z
〈Φ1(z1, z̄1) . . .ΦN (zN , z̄N )Φ(z, z̄)〉 = 0, if ∆Φ = 0. (24)

There is a natural question: if other null vectors impose on correlation functions any differential equa-
tions? To see that it is so, consider a correlation function of the form

〈Φ1(z1, z̄1) . . .ΦN (zN , z̄N )(L−kO)(z, z̄)〉.

Here we will think that O(z, z̄) is any operator (not necessarily primary), while Φ1, . . . ,ΦN are just
primary operators of right (chiral) dimensions ∆1, . . . ,∆N . The action of L−k on the operator is (due
to the definition in the last lecture) given by

(L−kO)(z, z̄) =

∮
C

dw

2πi
(w − z)1−kT (w)O(z, z̄).

The contour C is a small circle around the point z. Hence, we may pull the contour to infinity. It will
catch poles at w = z1, . . . , zN . We may apply the commutation relation of L−k with primary fields after
substitution z → zi − z. Closing around the infinity is equivalent to acting on the bra vacuum vector.
Since 〈0|L−k = 0 we obtain

〈Φ1(z1, z̄1) . . .ΦN (zN , z̄N )(L−kO)(z, z̄)〉

=

N∑
i=1

(
(k − 1)∆i

(zi − z)k
− 1

(zi − z)k−1

∂

∂zi

)
〈Φ1(z1, z̄1) . . .ΦN (zN , z̄N )O(z, z̄)〉. (25)

Evidently an mn level null vector produces a differential equation of order mn.
For example, for ∆ = ∆11 = 0 we have

N∑
i=1

∂

∂zi
〈Φ1(z1, z̄1) . . .ΦN (zN , z̄N )Φ(z, z̄)〉 = 0,

which is equivalent to (24) due to translation invariance.
For ∆Φ = ∆21 or ∆12 we have

|χ〉 = (b±2L2
−1 + L−2)|∆〉

and (
b±2 ∂

2

∂z2
+

N∑
i=1

(
∆i

(zi − z)2
− 1

zi − z
∂

∂zi

))
〈Φ1(z1, z̄1) . . .ΦN (zN , z̄N )Φ(z, z̄)〉 = 0. (26)

In the next lecture we will discuss how to apply these equations to obtaining correlation functions.

Problems

1. Prove the identity (11) by using the property (prove it too):

{z′′, z′} =

(
dz′

dz

)2

{z′′, z′}+ {z′, z}.

2. Find the third level null vectors and derive that they only exist at conformal dimensions ∆ =
∆31,∆13.

3. In the free boson theory with the energy-momentum tensor

T (z) = −1

4
(∂ϕ)2 +

b+ b−1

2
∂2ϕ

calculate explicitly the operators L−1Vp(z) and (L−2+b±2L2
−1)Vp(z). Then specify them to the momenta

p = −iαmn with (m,n) = (1, 1), (2, 1), (1, 2), (−1,−1), (−2,−1), (−1,−2). Show that the null vectors
vanish for m,n > 0 and remain nonvanishing for m,n < 0.
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