
Lecture 3
Free massless fermion on the cylinder and on the plane

Consider now a free massless Majorana fermion ψ =

(
ψ1

ψ2

)
on the cylinder:

S[ψ] =
i

2π

∫
d2ξ ψ̄γµ∂µψ =

i

π

∫
d2ξ(ψ1∂̄ψ1 − ψ2∂ψ2). (1)

Here, as usual, ψ̄ = ψ+γ0. The gamma-matrices should satisfy the conditions

γµγν + γνγµ = 2ηµν , γ0γµγ0 = (γµ)+. (2)

We choose them purely imaginary:

γ0 =

(
−i

i

)
= σ2, γ1 =

(
i

i

)
= iσ1, γ3 = γ0γ1 =

(
1
−1

)
= σ3. (3)

The Majorana condition in this case is
ψ∗ = ψ. (4)

The variables ψα(ξ) should be considered Grassmann (anticommuting): ψα(ξ)ψβ(ξ′) = −ψβ(ξ′)ψα(ξ).
The Hamiltonian reads1

H = − i

2π

∫ L

0

dξ1 ψγ3∂1ψ = − i

2π

∫ L

0

dξ1(ψ1∂1ψ1 − ψ2∂1ψ2) (5)

with the Poisson bracket
{ψα(ξ0, ξ1), ψβ(ξ0, ξ′1)} = iπδαβδ(ξ

1 − ξ′1). (6)

Note that due to anticommutativity of the field the Poisson bracket is symmetric. The equation of
motion looks like

∂0ψ = −σ3∂1ψ (7)

or
∂̄ψ1 = ∂ψ2 = 0, (8)

where, as we remember, ∂ = 1
2 (∂1 − ∂0) = ∂ζ , ∂̄ = 1

2 (∂1 + ∂0) = ∂ζ̄ . We see that ψ1 = ψ1(ζ) is a

right-moving Majorana–Weyl fermion wave, while ψ2 = ψ2(ζ̄) is a left-moving Majorana–Weyl fermion
wave.

Let us expand the ψ field into modes. Before doing it we have to fix the periodicity condition. There
are two possibilities:

• Ramond (R) condition: ψ(ξ0, ξ1 + L) = ψ(ξ0, ξ1);

• Neveu–Schwarz (NS) condition: ψ(ξ0, ξ1 + L) = −ψ(ξ0, ξ1).

We have

ψ1(ξ) =

√
π

L

∑
k∈Z+ δ

2

bk(ξ0)e2πikξ1/L,

ψ2(ξ) =

√
π

L

∑
k∈Z+ δ

2

b̄k(ξ0)e−2πikξ1/L,

(9)

Here
δ = 0 in the R case;

δ = 1 in the NS case.
(10)

Evidently, due to the Majorana condition we have

b−k = (bk)
∗
, b̄−k =

(
b̄k
)∗
. (11)

1Accurate derivation of (5) and (6) demands careful taking into account constraints, but we omit these subtleties.
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The Hamiltonian and momentum are

H =
2π

L

∑
k∈Z≥0+ δ

2

k(b−kbk + b̄−k b̄k), P =
2π

L

∑
k∈Z≥0+ δ

2

k(b−kbk − b̄−k b̄k). (12)

The Poisson bracket is
{bk, bl} = {b̄k, b̄l} = iδk+l,0, {bk, b̄l} = 0. (13)

It is easy to check that the equations of motion for the modes bk, b̄k in both cases read

∂0bk = −i
2π

L
kbk, ∂0b̄k = −i

2π

L
kbk. (14)

and have the following solution

b+k = βke−2πikξ0/L, b−k = β̄ke2πikξ0/L. (15)

We finally have

ψ1(ζ) =

√
π

L

∑
k∈Z+ δ

2

βke2πikζ/L,

ψ2(ζ̄) =

√
π

L

∑
k∈Z+ δ

2

β̄ke−2πikζ̄/L.

(16)

Now let us quantize the system. The Poisson bracket is substituted by the anticommutator:

[ψα(ξ0, ξ1), ψβ(ξ0, ξ′1)]+ = πδαβδ(x− x′) (17)

or
[βk, βl]+ = [β̄k, β̄l]+ = δk+l,0, [βk, β̄l]+ = 0. (18)

We changed to constant operators βk, β̄k. Define the vacuums by the conditions βk|0〉NS = β̄k|0〉R =
βk|0〉R = β̄k|0〉NS = 0 for k >. But there will be some difference between the NS and R vacuums, which
we specify later.

Let us write the Hamiltonian in terms of β-modes. As in the boson case we consider the products of
operators as symmetrized ones:

β−kβk 7→
1

2
(β−kβk − βkβ−k) = β−kβk −

1

2
.

In the R sector we obtain for the vacuum energy

ER
0 = −2π

∞∑
k=0

k

L
=

π

6L
.

In the R sector we have

ENS
0 = −2π

∞∑
k=0

k + 1/2

L
=

[
2π

∂

∂ε

∞∑
k=0

e−ε(k+1/2)/L + const · L

]
ε→0

=

[
∂

∂ε

π

sh ε
2L

+ const · L
]
ε→0

=

[
−2πL

ε2
− π

12L
+ const · L

]
ε→0

= − π

12L
.

The Hamiltonians read

HR =
2π

L

∑
k∈Z>0

k(β−kβk + β̄−kβ̄k) +
π

6L
,

HNS =
2π

L

∑
k∈Z≥0+ 1

2

k(β−kβk + β̄−kβ̄k)− π

12L
.

(19)

The expressions for the momentum remain unchanged.
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Note that the energy of the NS vacuum is larger than that of the R vacuum:

ER
0 − ENS

0 =
π

4L
. (20)

It means that the R vacuum is an excited state. Moreover, since [b0, H
R] = [b̄0, H

R] = 0 and b20 = b̄20 = 1
2 ,

if |v〉R is any eigenvector, we immediately obtain a quadruplet

|v〉R, β0|v〉R, β̄0|v〉R, β0β̄0|v〉R. (21)

Nevertheless, this representation is reducible. It splits into two equivalent irreducible representation, one
of which we will associate with the fermion. Introduce two fermion operators

c0 =
i−1/2β0 + i1/2β̄0√

2
, c+0 =

i1/2β0 + i−1/2β̄0√
2

. (22)

They are mutually conjugate and satisfy the standard fermion relations

[c0, c
+
0 ]+ = 1, c20 = (c+0 )2 = 0. (23)

It is natural to construct any representation from the c0-vacuum |u〉: c0|u〉 = 0. The representation is
evidently two-dimensional: span{|u〉, c+0 |u〉}. It is easy to construct two such vectors in the representation
(21):

|u1〉 = c0β0|v〉R, |u2〉 = c0|v〉R.

We may remove doubling by choosing any of these representations.
Finally, define the vacuum vector |0〉R by the conditions

βk|0〉R = β̄k|0〉R = 0 (k > 0), c0|0〉R = 0. (24)

The second orthogonal vector is
|1〉R = c+0 |0〉R (25)

satisfy the ‘dual’ condition: c+0 |1〉R = 0.
The NS vacuum is nondegenerate and corresponds to the lowest energy in both sectors. The condition

βk|0〉NS = β̄k|0〉NS = 0 (k > 0) (26)

defines it uniquely.
To understand this picture better, let us make the transformation to the plane z = e−2πiζ/L, z̄ =

e2πiζ̄/L. The action (1) is consistent with a conformal transformation, if the spinor field transforms as

ψ1(ζ, ζ̄)→ (f ′(ζ))1/2ψ1(f(ζ), f̄(ζ̄)), ψ2(ζ, ζ̄)→ (f̄ ′(ζ̄))1/2ψ2(f(ζ), f̄(ζ̄)). (27)

Hence on the plane we have

ψ1(z) =
i1/2√

2
Ψ(z) =

i1/2√
2

∑
k∈Z+ δ

2

βkz
−1/2−k,

ψ2(z̄) =
i−1/2

√
2

Ψ̄(z̄) =
i−1/2

√
2

∑
k∈Z+ δ

2

β̄kz̄
−1/2−k.

(28)

Note that the periodicity conditions on the plane are opposite to those on the cylinder:

R sector: ψ(e2πiz, e−2πiz̄) = −ψ(z, z̄),

NS sector: ψ(e2πiz, e−2πiz̄) = ψ(z, z̄).
(29)

In the NS sector the fermion is well-defined in the vicinity of the origin, while in the R sector there is a
singularity. The singularity is described by a special operator depending on the R vacuum:

|0〉R = σ(0)|0〉NS, |1〉R = µ(0)|0〉NS. (30)
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The operator σ(x) is called spin operator or order parameter, while the operator µ(x) is called dual spin
operator or disorder parameter.2

From (19) we may conclude that the Hamiltonian on the cylinder H is related to the dilation opera-
tor D on the plane:

H =
2π

L
D − π

12L
. (31)

The vacuum energy term is twice smaller than in the boson case. From (20) we conclude that

Dσ(z) =
1

8
σ(z), Dµ(z) =

1

8
µ(z), (32)

which means that their scaling dimensions dσ = dµ = 1
8 .

Problems

1. Compute the correlation functions:

1. 〈Ψ(z′)Ψ(z)〉 def
= NS〈0|Ψ(z′)Ψ(z)|0〉NS;

2. 〈µ(∞)Ψ(z)σ(0)〉 def
= R〈1|Ψ(z)|0〉R;

3. 〈σ(∞)Ψ(z′)Ψ(z)σ(0)〉 def
= R〈0|Ψ(z′)Ψ(z)|0〉R.

2. The matrix element R〈0|0〉R defines a pair correlation function on the plane:

R〈0|0〉R = 〈σ(∞)σ(0)〉 = lim
z,z̄→∞

z1/16z̄1/16〈σ(z, z̄)σ(0)〉.

By means of a Möbius transformation

f(z) =
az + b

cz + d

calculate the correlation function

〈σ(x′)σ(x)〉 = NS〈0|σ(x′)σ(x)|0〉NS.

3. By applying a Möbius transformation to the second matrix element of Problem 1 find the correlation
function

〈µ(z1)Ψ(z2)σ(z3)〉.

2Their names are related to their role in the Ising model as the operators corresponding to the spin variable in two dual
representations of the Ising model. The parameter σ becomes nonzero at low temperature T < Tc, while µ is only nonzero
at high temperatures T > Tc. The free massless fermion describes the Ising model at the critical point, where there is no
principal difference between these two objects.
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