
Lecture 2
Correlation functions and operator product expansions

In the last lecture we found that
|p〉 = eiq0p|0〉. (1)

We want to use this fact to introduce a new class of operators. For this purpose rewrite (1) as follows

|p〉 = eiq0p|0〉 = :eipϕ(ξ): |0〉
∣∣∣
ξ0→−∞

= :eipϕ(x=0): |0〉.

Indeed, the contribution of αk (k > 0) vanishes since they kill the vacuum, while the contribution of α−k
vanishes since it contains the factor zk → 0.

The exponential operators are very important and deserve a special notation:

Vp(x) = :eipϕ(x): = eipQ(zz̄)−2ipP exp
∑
k>0

−p(α−kzk + ᾱ−kz̄
k)

k
exp

∑
k>0

p(αkz
−k + ᾱkz̄

−k)

k
. (2)

Consider the product

Vp1(x′)Vp2(x) = eip1Q (z′z̄′)−2ip1P exp
∑
k>0

−p1(α−kz
′k + ᾱ−kz̄

′k)

k
exp

∑
k>0

p1(αkz
′−k + ᾱkz̄

′−k)

k

× eip2Q (zz̄)−2ip2P exp
∑
k>0

−p2(α−kz
k + ᾱ−kz̄

k)

k
exp

∑
k>0

p2(αkz
−k + ᾱkz̄

−k)

k
.

To render this to the normal ordered form the boxed parts must be commuted (red with red, blue with
blue). By using the standard rule

efeg = e[f,g]egef ,

if the commutator [f, g] is a c-number, we obtain

Vp1(x′)Vp2(x) = (z′ − z)2p1p2(z̄′ − z̄)2p1p2 :eip1ϕ(x′)+ip2ϕ(x): . (3)

More generally,

VpN (xN ) :ei
∑N−1

i=1 piϕ(xi): =

N−1∏
i=1

(zN − zi)2pNpi(z̄N − z̄i)2pNpi × :ei
∑N

i=1 piϕ(xi): . (4)

Hence, 〈 x
N∏
i=1

Vpi(xi)

〉
=

N∏
i>j

(zi − zj)2pipj (z̄i − z̄j)2pipj × 〈eiQ
∑N

i=1 pi〉.

We have nearly reached our destination, but we have to consider the last factor accurately. Let p =
∑
pi

and write
〈eipQ〉 = 〈0|eipQ|0〉 = 〈0|p〉.

The r.h.s. must be zero, if p 6= 0, and a nonzero constant (e.g. 1), if p = 0. It is mathematically consistent,
but the answer may look strange for a physicist. To advance in a more physical way, let us apply the
rule

〈ef 〉 = e
1
2 〈f

2〉, (5)

if f is linear in the basic oscillator operators. We have

〈eipQ〉 = e−
p2

2 〈Q
2〉 = R−2p2 (6)

1



according to the assumption of the last lecture. Therefore〈 x
N∏
i=1

Vpi(xi)

〉
= R−2(

∑N
i=1 pi)

2
N∏
i>j

(zi − zj)2pipj (z̄i − z̄j)2pipj . (7)

Since physically R is the scale of the scrap on which the theory lives, the infinite plane corresponds
R→∞. In this limit we reproduce the mathematical answer〈 x

N∏
i=1

Vpi(xi)

〉
=

N∏
i>j

(zi − zj)2pipj (z̄i − z̄j)2pipj ×

{
1,

∑N
i=1 pi = 0;

0,
∑N
i=1 6= 0.

(8)

Let us reproduce this answer in yet more physical (and simple) way. Calculate 〈exp i
∑
piϕ(xi)〉 by

means of the functional integral. In fact, the only thing we need from the functional integral is (5). We
obtain 〈

ei
∑
piϕ(xi)

〉
= exp

−1

2

N∑
i,j

pipj〈ϕ(xi)ϕ(xj)〉

 =

N∏
i,j

(
(zi − zj)(z̄i − z̄j)

R2

)pipj
.

There are two types of terms in the exponent. For i 6= j we may apply standard formula for pair
correlation function, but if i = j it formally gives infinity. Let us cut it at a small radius r0:

〈ϕ(x′)ϕ(x)〉 =

{
2 log R2

(z′−z)(z̄′−z̄) , if |x2| > r2
0;

2 log R2

r20
, if |x2| ≤ r2

0.
(9)

Then we have (if |(xi − xj)2| > r2
0)

〈
ei

∑
piϕ(xi)

〉
=

(
r2
0

R2

)∑
p2i N∏
i>j

(
(zi − zj)(z̄i − z̄j)

R2

)2pipj

= r
2
∑
p2i

0 R−2(
∑
pi)

2
N∏
i>j

(zi − zj)2pipj (z̄i − z̄j)2pipj .

We see that the contribution of r0 can be factorized between the exponents. Hence, the answer will
coincide with (7), if we set

eipϕ(z) = r2p2

0 :eipϕ(z): . (10)

It means that the normal ordered exponent :eipϕ(z): is a proper renormalization of the true exponent
eipϕ(z). This argument also explains why the normal ordered exponent possesses the scaling dimen-
sion d = 2p2: any correlation function on an infinite plane is invariant under the substitution

Vp(x)→ λ2p2Vp(x). (11)

In other words the scaling dimension d is the eigenvalue of the dilation operator D acting on the corre-
sponding state |p〉.

Now we will be interested in the energy-momentum tensor. According to the usual formula in the
Minkowski space

Tµν = ∂νϕ
∂L

∂(∂µϕ)
− δµνL

we obtain

Tzz ≡ −2πT =
1

8π
(∂ϕ)2, Tz̄z̄ ≡ −2πT̄ =

1

8π
(∂̄ϕ)2, Tzz̄ ≡ 2πΘ = 0. (12)

The last equation reflects conformal invariance of the theory. The energy-momentum conservation law
∂µT

µ
ν = 0 leads to

∂̄T = ∂Θ, ∂T̄ = ∂̄Θ.
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Since Θ = 0 they reduce to
∂̄T = ∂T̄ = 0.

It means that the operator T = T (z) is a function of the only variable z, while T̄ = T̄ (z̄) is a function
of the only variable z̄. On the Euclidean plane T (z) is a complex analytic (holomorphic) function of z,
while T̄ (z̄) is a holomorphic function of z̄ (it is usually called ‘antiholomorphic’). In quantum mechanics
it is natural to define them as

T (z) = −1

4
:(∂ϕ)2: , T̄ (z̄) = −1

4
:(∂̄ϕ)2: . (13)

On the cylinder it is natural to define the quantum energy-momentum tensor components according to

Tcyl(ζ) = −
(

2π

L

)2(
z2T (z)− 1

24

)
, T̄cyl(ζ̄) = −

(
2π

L

)2(
z̄2T̄ (z)− 1

24

)
. (14)

The term −1/24 was added artificially to reproduce the term −π/6L in the Hamiltonian H being written
in terms of the energy-momentum tensor:

H =

∫ L

0

dξ1 T 00(ξ) = −
∫ L

0

dξ1

2π
(Tcyl(ξ

1) + T̄cyl(ξ
1)). (15)

In one of the next lectures we will understand the true origin of this term.
It is convenient to introduce the Laurent components of the energy-momentum tensor:

Lk =

∮
dz

2πi
zk+1T (z) = p2δk0 +

1

4

∑
l∈Z\{0,k}

:αlαk−l: ,

L̄k =

∮
dz̄

2πi
z̄k+1T (z̄) = p2δk0 +

1

4

∑
l∈Z\{0,k}

:ᾱlᾱk−l: .

(16)

The integration contours are defined in the Euclidean plane. They encircle coordinate origin z = 0
(z̄ = 0) in the counter-clockwise direction of z (z̄) and all points, where operators, which stand to the
right of T (z) (T̄ (z̄)), are placed. For example, in the product T (u)LkT (w) it will enclose w, but not u.

In these components (15) can be rewritten as

H =
2π

L

(
L0 + L̄0 −

1

12

)
. (17)

Similarly, the momentum operator on the cylinder is given by

P =
2π

L
(L0 − L̄0). (18)

On the plane the operator D = L0 + L̄0 is the dilation operator, while S = L0 − L̄0 is the angular
momentum operator. Translations are generated by the operators L−1, L̄−1. We may set

Hplane = −i(L−1 − L̄−1), Pplane = −i(L−1 + L̄−1). (19)

Consider the operator product

T (z′)T (z) =
1

16
:(∂ϕ(x′))2: :(∂ϕ(x))2:

=
1

16
:(∂ϕ(x′))2(∂ϕ(x))2: +

1

4
〈∂ϕ(x′) ∂ϕ(x)〉 :∂ϕ(x′) ∂ϕ(x): +

1

8
〈∂ϕ(x′) ∂ϕ(x)〉2.

We want to count singularities of the expression. The normal products are regular as z′ → z. Hence,
the only singularity can stem from the correlation function

〈∂ϕ(x′) ∂ϕ(x)〉 = − ∂2

∂z′2
〈ϕ(x′)ϕ(x)〉 =

2

(z′ − z)2
.
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By expanding everything in powers of z′− z we obtain the following operator product expansion (OPE):

T (z′)T (z) =
1/2

(z′ − z)4
+

T (z)

(z′ − z)2
+
∂T (z)

z′ − z
+O(1). (20)

Consider now the commutator

[Lk, Ll] = LkLl − LlLk =

∮
Cout

dz′

2πi

∮
C

dz

2πi
z′k−1zl−1T (z′)T (z)−

∮
C

dz

2πi

∮
Cin

dz′

2πi
z′k−1zl−1T (z′)T (z).

The two terms differ in the order of contours. The contour Cout encloses the contour C, while the contour
Cin is enclosed by C. Hence,

[Lk, Ll] =

∮
C

dz

2πi

∮
Cz

dz′

2πi
z′k−1zl−1T (z′)T (z).

Here Cz is a small contour that encloses z in a counter-clockwise direction. After substituting the OPE
(20) and evaluating the residue we obtain

[Lk, Ll] = (k − l)Lk+l +
1

12
k(k2 − 1)δk+l,0. (21)

The algebra (21) is called the Virasoro algebra. The same is valid for the left (antichiral) component
T̄ (z̄), which produces another copy of the Virasoro algebra.

Similarly one can prove the OPE

T (z′)Vp(x) =
p2Vp(x)

(z′ − z)2
+
∂Vp(x)

z′ − z
+O(1). (22)

As a commutator one can rewrite it as

[Lk, Vp(x)] = p2(k + 1)zkVp(x) + zk+1∂Vp(x). (23)

The sense of the above equations will be clarified later, when we will study conformal field theory.

Problems

1. Accurately prove the formulas (3), (4).
2. Let us modify the energy-momentum tensor as follows:1

T (z) = −1

4
(∂ϕ)2 +

iQ
2
∂2ϕ, T̄ (z̄) = −1

4
(∂̄ϕ)2 +

iQ
2
∂̄2ϕ. (24)

Prove that

T (z′)T (z) =
c/2

(z′ − z)4
+

T (z)

(z′ − z)2
+
∂T (z)

z′ − z
+O(1), c = 1− 6Q2,

and
[Lk, Ll] = (k − l)Lk+l +

c

12
k(k2 − 1)δk+l,0.

3. Prove that for T (z) from (24) the Virasoro algebra generators read

Lk = p2δk0 +
1

4

∑
l∈Z\{0,k}

:αlαk−l: +
k + 1

2
Qαk.

4. For T (z) from (24) prove the OPE

T (z′)Vp(x) =
∆pVp(x)

(z′ − z)2
+
∂Vp(x)

z′ − z
+O(1), ∆p = p(p−Q).

1We will see below that this form of the energy-momentum tensor is consistent with the Liouville theory, if iQ = b+b−1.
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5. Define the so called correlation functions with a charge at infinity:

〈X〉Q = lim
x0→∞

(z0z̄0)2Q2

〈XV−Q(x0)〉.

Prove that for exponential operators they read〈 x
N∏
i=1

Vpi(xi)

〉
Q

=

N∏
i>j

(zi − zj)2pipj (z̄i − z̄j)2pipj ×

{
1,

∑N
i=1 pi = Q;

0,
∑N
i=1 6= 0.

(25)

Show the functions (25) to be invariant under the transformation

Vp(z, z̄)→ (f ′(z))∆p(f̄ ′(z̄))∆pVp(f(z), f̄(z̄)),

if f(z) is a Möbius transformation

f(z) =
az + b

cz + d
.
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