Lecture 2
Correlation functions and operator product expansions

In the last lecture we found that .
[p) = €'®P|0). (1)

We want to use this fact to introduce a new class of operators. For this purpose rewrite as follows

— ¢l 90P|0) = P¥(8). |0 — iP?(@=0). 09},
Ip) = ¢7[0) - )
Indeed, the contribution of oy, (k > 0) vanishes since they kill the vacuum, while the contribution of a_j,
vanishes since it contains the factor z* — 0.
The exponential operators are very important and deserve a special notation:

_ k ~ sk —k ~ z—k
V};(Qﬁ) _ :elpga(x): — epo(zé)_leP eXp’;O p(a—kzk+ a_pz ) expkz>0 p(akz Z-Oékz ) (2)

Consider the product

o 1k ~ stk 1=k ~ zI—k
Vy, ('), (z) = €719 (2'2/) 2P eXpZ Pl(a—kzk+a—k2 )expzpl(ak«z k+04k2 )

k>0 k>0

ko~ sk k| ~ =k
X(Zz)—meP expY —p2(04—k2k+04—k2 ) expzm(akz k+ Rz )_

k>0 k>0

To render this to the normal ordered form the boxed parts must be commuted (red with red, blue with

blue). By using the standard rule
efed = e[f’g]egef,

if the commutator [f, g] is a c-number, we obtain

Vi, (2/)Vpy (2) = (& — 2)21172(2 — )22 s @)zt (3)
More generally,
N-—-1 N1 N
Vi () ol ity pav(Ea). — H (zn — 2;)2PNPi(zZy — ;) 2PNPi % el Dana Pig(@i). (4)
i=1

Hence,
)
N N | i
<H V1($z)> = H(zl — Zj)Qpipj (51. _ 2],)2:07117]' % <elQ DR p1>
i=1 i>j
We have nearly reached our destination, but we have to consider the last factor accurately. Let p = > p;

and write ' '
(€??) = (0[e™|0) = (0lp).

The r.h.s. must be zero, if p # 0, and a nonzero constant (e.g. 1), if p = 0. It is mathematically consistent,
but the answer may look strange for a physicist. To advance in a more physical way, let us apply the

rule o
(of) = o417, (5)
if f is linear in the basic oscillator operators. We have

. p2
(ePQ) = o~ (@) _ p2° (6)



according to the assumption of the last lecture. Therefore

R o
<Hvi ($1)> = R_2(Ez‘=1 pi) H(Zl _ zj)Zpip-f(Ei _ Ej)QPin. (7)

i>]

Since physically R is the scale of the scrap on which the theory lives, the infinite plane corresponds
R — oco. In this limit we reproduce the mathematical answer

¥ O - oL SN p=o;
<i1:[1Vi(93i)> = [1(zi = 275 (2 — 7% % {07 %:z\i]; 0. (8)

i>j

Let us reproduce this answer in yet more physical (and simple) way. Calculate {(expiy_ p;p(z;)) by
means of the functional integral. In fact, the only thing we need from the functional integral is . We
obtain

(o) —exp (<25 tptraete) | = T (B2 =20)™.

4,
There are two types of terms in the exponent. For ¢ # j we may apply standard formula for pair
correlation function, but if 4 = j it formally gives infinity. Let us cut it at a small radius rg:

R? ; .
QIOgW, if |2%] > rg;
2log %, if |22 < 7r3.

0

9)

Then we have (if |(z; — z;)?| > r3)

Xpi N S 2.)\ 2PiPi
<eiZPw(wi)> _ (r%) p H ((zl —z;)(% —zj)) pip
R? R2

>3

N
_ T(Q)ZP?R*2(ZP~L)2 H(ZZ — 2)2PPi (5, — 7;) iP5

i>7

We see that the contribution of ry can be factorized between the exponents. Hence, the answer will
coincide with (7), if we set
elPP(2) — TSPQ ePP). (10)

It means that the normal ordered exponent :e??(*): is a proper renormalization of the true exponent
e?#(2) This argument also explains why the normal ordered exponent possesses the scaling dimen-
sion d = 2p?: any correlation function on an infinite plane is invariant under the substitution

V(@) = N V(). (11)

In other words the scaling dimension d is the eigenvalue of the dilation operator D acting on the corre-
sponding state |p).

Now we will be interested in the energy-momentum tensor. According to the usual formula in the
Minkowski space

IJ/ pr— —
T} 8”@8((9“@)

— 1L

we obtain

1 _ _
T,,=-21T = 8—(8@2, Tz = 21T = —(0p)?, T, =270 = 0. (12)
™

1
8
The last equation reflects conformal invariance of the theory. The energy-momentum conservation law
0,T# = 0 leads to B o

0T = 00, 0T = 00.



Since © = 0 they reduce to - B
oT =0T =0.

It means that the operator T' = T(z) is a function of the only variable z, while T = T(Z) is a function
of the only variable z. On the Euclidean plane T'(z) is a complex analytic (holomorphic) function of z,
while T'(2) is a holomorphic function of z (it is usually called ‘antiholomorphic’). In quantum mechanics
it is natural to define them as

1

T(z) = —=:(0¢p)?:, T(Z) = —=:(0¢)*:.

; (13)

On the cylinder it is natural to define the quantum energy-momentum tensor components according to

ra©=- (%) (Fre-5).  tw@=-(%) (#re-2). o9

The term —1/24 was added artificially to reproduce the term —m /6L in the Hamiltonian H being written
in terms of the energy-momentum tensor:

" et oo Pty p
H= [ 1% = - [T (Ta(€) + Tonl€) (15)
0 0o <7
In one of the next lectures we will understand the true origin of this term.
It is convenient to introduce the Laurent components of the energy-momentum tensor:

dz 1
Ly = % %ZkHT(Z) = p°Oro + 1 Z oqog—g,
1eZ\{0,k}

(16)

= A2 ki, 2 1 A1
L, = % 2712 T(zZ) = p“dko + 1 Z Q.
1eZ\{0,k}

The integration contours are defined in the Euclidean plane. They encircle coordinate origin z = 0
(z = 0) in the counter-clockwise direction of 2 (2) and all points, where operators, which stand to the

right of T'(z) (T'(2)), are placed. For example, in the product T'(u)L;T (w) it will enclose w, but not w.
In these components can be rewritten as

2 - 1
H—L<L0+L0—12>~ (17)

Similarly, the momentum operator on the cylinder is given by

21

P=
L

(Lo — Lo). (18)

On the plane the operator D = Ly + Ly is the dilation operator, while S = Ly — Ly is the angular
momentum operator. Translations are generated by the operators L_y, L_;. We may set

leane = *i(L—l - E—l)a Pplane = *i(L—l + E—1)~ (19)

Consider the operator product

T()T(2) = 15 (0p(a'): :(0p(2))

1

1 \\2 2 1 ! / 1 ! 2

= 16 (090(2")"(09(2))": + 1 {9p(a") Op(2)) :0p(2") Op(z): + £ (Dp(a’) Op(2))".
We want to count singularities of the expression. The normal products are regular as z’ — 2. Hence,
the only singularity can stem from the correlation function

0? 2

(Dp() Op(w)) = =55 (2 )p() = 5



By expanding everything in powers of 2’ — z we obtain the following operator product expansion (OPE):

T()T(2) = (Z,lf it (Z,szi)Q + L oq), (20)

Consider now the commutator

dz'
[Lk,Ll] =LiyL; — L;L, :%C 271_1% 271'1 PRl 1T % 27_”% 27?1 2k lzlilT(Z,)T(Z).

The two terms differ in the order of contours. The contour Cy, encloses the contour C, while the contour
Ciy is enclosed by C. Hence,

dz’'
L L lk 1 l lT T .
= onf o ()7(2)

Here C, is a small contour that encloses z in a counter-clockwise direction. After substituting the OPE
and evaluating the residue we obtain

1
[Lis La) = (k= DL + 75k = Dgro- (21)
The algebra is called the Virasoro algebra. The same is valid for the left (antichiral) component

T(%), which produces another copy of the Virasoro algebra.
Similarly one can prove the OPE

PVp(x) | OVy(z)

T(2")Vp(x) = (=22 2 —z +0(1). (22)
As a commutator one can rewrite it as
(L, V()] = 920k + 1)V () + 25410V, (@), (23)

The sense of the above equations will be clarified later, when we will study conformal field theory.

Problems

1. Accurately prove the formulas .
2. Let us modify the energy—momentum tensor as followsEI

T(:) = L7 + Lorp, () = 100 + 202 (21)
Prove that ) . o7
T()T(z) = (Z,Cf SR EZ;V + _(Zz +0(1), ¢=1-6Q%
and

c
(L, Lo] = (k — 1) Lyt + Ek(kQ — 1)0k-+1,0-
3. Prove that for T'(z) from the Virasoro algebra generators read
1 k+1
_ 2
Ly =p 00 + Z et + ——Qay.
1eZ\{0,k}

4. For T'(z) from prove the OPE

%@ o), ay=pr- Q).

zl—z

T(EVola) = ES +

1We will see below that this form of the energy-momentum tensor is consistent with the Liouville theory, if iQ = b4b~1.




5. Define the so called correlation functions with a charge at infinity:

(X)o = lim (20%)2 (XV_o(20)).

€To—r00

Prove that for exponential operators they read

i o 1 Npi=O;
<ZU1 Vi(x")>g = [1Gi = 27 (zi = 2% x {0: %V:Zé 0. ¢ (25)

>
Show the functions to be invariant under the transformation
Vi(2,2) = (f/(2))27 (F(2)2 Vi (£(2), f(2)),

if f(z) is a Mobius transformation
az+b

&)= o




