
Lecture 10
Algebraic Bethe Ansatz. Solving Bethe equations

Let us return to the definition of the L-operator:

L(u) = R0N (u) . . . R02(u)R01(u) =

(
A(u) B(u)
C(u) D(u)

)
. (1) Ludef

Consider the matrix element B(u) = L(u)+−. This element decreases spin by one:

[Sz, B(u)] = −B(u). (2) SzBcommut

Apply this operator to the pseudo-vacuum |Ω+〉. We will obtain a plane wave

B(u)|Ω+〉 =
∑
j

bj−1(u)c(u)aN−j(u)|j〉 =
aN (u)c(u)

b(u)

∑
j

(
b(u)

a(u)

)j
|j〉. (3) B1states

The role of momentum is played by the parameter u, which determines the ratio z = b(u)/a(u). A bit more
difficult to obtain the following state:

B(u1)B(u2)|Ω+〉 =
aN1 a

N
2 c1c2
b1b2

∑
j1<j2

(
a21
b21

zj11 z
j2
2 +

a12
b12

zj21 z
j1
2

)
|j1, j2〉, (4) B2states

where ai = a(ui), aij = a(ui − uj) and so on, zi = bi/ai. It can be checked by a straightforward calculation
that

S(z1, z2) =
a(u1 − u2)b(u2 − u1)
b(u1 − u2)a(u2 − u1)

, zi =
b(ui)

a(ui)
. (5) Sz1z2-ab

On the basis of these examples we may suppose that the states of the form

|u1, u2, . . . , uk〉 = B(u1)B(u2) . . . B(uk)|Ω+〉 (6) Bstates

have the structure of the Bethe wave functions with zj = b(uj)/a(uj). The expression (6) is called the
algebraic Bethe Ansatz. To understand whether this expression really gives eigenvectors, consider the com-
mutation relations that follow from the Young–Baxter equation:

R12(u1 − u2)L1(u1)L2(u2) = L2(u2)L1(u1)R12(u1 − u2).

First, the ++
−−-component of this relation gives

B(u1)B(u2) = B(u2)B(u1). (7) BBcommut

This means that the states (6) are symmetric in u1, . . . , uk. Second, from the components ++
−+ and −+−− we

have the relations

a(u1 − u2)B(u1)A(u2) = c(u1 − u2)B(u2)A(u1) + b(u1 − u2)A(u2)B(u1), (8) ABcommut

a(u2 − u1)B(u1)D(u2) = c(u2 − u1)B(u2)D(u1) + b(u2 − u1)D(u2)B(u1). (9) DBcommut

From these relations one can derive the identities

A(u)|u1, . . . , un〉 = α(u;u1, . . . , un)|u1, . . . , un〉

−
k∑
i=1

c(ui − u)

b(ui − u)
α(ui;u1, . . . , ûi, . . . , un)|u, u1, . . . , ûi, . . . , un〉,

D(u)|u1, . . . , un〉 = δ(u;u1, . . . , un)|u1, . . . , un〉

−
n∑
i=1

c(u− ui)
b(u− ui)

δ(ui;u1, . . . , ûi, . . . , un)|u, u1, . . . , ûi, . . . , un〉,

(10) ABaction
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where

α(u;u1, . . . , un) = aN (u)
n∏
i=1

a(ui − u)

b(ui − u)
, δ(u;u1, . . . , un) = bN (u)

n∏
i=1

a(u− ui)
b(u− ui)

. (11) alphadeltadef

The relations (10) are proved by induction.
From the relations (10) we obtain

T (u)|u1, . . . , un〉 = (α(u;u1, . . . , un) + δ(u;u1, . . . , un))|u1, . . . , un〉+ bad terms.

For the vector |u1, . . . , un〉 to be an eigenvector, the sum of the bad terms must be zero. In this case the
eigenvalue of the transfer matrix will be equal to

Λ(u;u1, . . . , un) = aN (u)
n∏
i=1

a(ui − u)

b(ui − u)
+ bN (u)

n∏
i=1

a(u− ui)
b(u− ui)

. (12) Lambda

Note that the bad terms, in fact, accumulate at the points j = 1, N and the condition for their cancellation
is equivalent to the periodicity condition.

Since c(u)
b(u) = − c(−u)

b(−u) , the bad terms are canceled if

α(ui;u1, . . . , ûi, . . . , uk) = δ(ui;u1, . . . , ûi, . . . , uk)

or (
b(ui)

a(ui)

)N
=

n∏
j=1
j 6=i

a(uj − ui)b(ui − uj)
b(uj − ui)a(ui − uj)

, (13) Betheeq

These are the Bethe equations. Each solution of the Bethe equations corresponds to a certain eigenvector of
the transfer matrix (and of the Hamiltonian), so that the states can be enumerated by the sets {ui}ni=1.

Let us rewrite the Bethe equations more explicitly in the form(
sinui

sin(λ− ui)

)N
=

n∏
j=1
j 6=i

sin(ui − uj + λ)

sin(ui − uj − λ)
for c < a+ b and so on (|∆| < 1), (14) Bethegapless

(
shui

sh(λ− ui)

)N
=

n∏
j=1
j 6=i

sh(ui − uj + λ)

sh(ui − uj − λ)
for c > a+ b (∆ < −1). (15) Betheantifer

The ∆ < −1 regime corresponds to the presence of two ground configurations of the six-vertex model, for
which the configurations around all vertices are of the c-type, and two-fold (in the thermodynamic limit)
degeneracy of the ground state of the XXZ model. Excited states in XXZ models are separated from the
ground states by a gap. In this case, one speaks of the antiferroelectric ordering of the six-vertex model
and the antiferromagnetic ground state of the XXZ model. In the |∆| < 1 regime there are infinitely many
(on an infinite lattice) ground configurations of the six-vertex model (disordered critical state) and a gapless
spectrum near the ground state in the XXZ model. In both cases, the ground state corresponds to states
with Sz = 0 or Sz = ±1

2 depending on the evenness of n.
Let us show how to find the largest eigenvalue Λmax(u) in this model in the thermodynamic limit. Make

the following assumptions:
1) In the ground state the plane waves contain neither exponentially growing nor exponentially decaying

terms, so that |zi| ≡ |b(ui)/a(ui)| = 1 or ui = λ/2 + ivi with real vi.
2) In the ground state, vi become dense in the thermodynamic limit, forming continuous bands without

holes and separate values.
3) In the ground state Sz/N → 0.
For definiteness, we will consider the case |∆| < 1.
It is convenient to take logarithm of the Bethe equations. Let us introduce the notation

eip(v) =
sin(λ/2 + iv)

sin(λ/2− iv)
, eiθ(v) =

sin(λ+ iv)

sin(λ− iv)
. (16) pi-thetda-def
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We choose a branch of the logarithm such that p(0) = θ(0) = 0. The Bethe equations are written down as

eiNp(vi) = (−)n−1
n∏
j=1

eiθ(vi−vj).

By taking logarithm, we obtain

Np(vi) = 2πIi +
n∑
j=1

θ(vi − vj),

where Ii is an integer or a half integer depending on the evenness of n. Condition 2) can be made more exact
now:

2’) In the ground state, all Ii form a set of consecutive integers for odd n and half-integers for even n.
In this form, the statement seems to be true not only in the thermodynamic limit. For small n it can

also be shown that
2a) The largest eigenvalue of the transfer matrix in a sector with a given Sz is achieved with a symmetric

distribution of Ii (and vi) around zero.
Find the interval in which v will change in the continuous limit. For this, it is more convenient to use

the Hamiltonian HXXZ . As we have already said in the last lecture, the energy of a state is the sum of the
pseudoparticle energies ε(z) = 2∆− z − z−1 = 2∆− 2 cos p(v). The lowest energy corresponds to the value
p = 0, that is, v = 0. Pseudoparticles should densely fill the region −pF ≤ p(v) ≤ pF , where pF is the Fermi
momentum, ε(e±ipF ) = εF . Since the function p(v) is odd and monotone, the spectral parameter v should
run the region from −vF to vF , where p(vF ) = pF .

We have for the ground state

p(vi+1)− p(vi) =
2π

N
+

1

N

n∑
j=1

(θ(vi+1 − vj)− θ(vi − vj)).

In the limit N →∞ we have
p′(v) = ρ(v) +

∫ vF

−vF

dv′

2π
θ′(v − v′)ρ(v′) (17) inteq

or
ρ(v) =

2 sinλ

ch 2v − cosλ
−
∫ vF

−vF

dv′

2π

2 sin 2λ

ch 2(v − v′)− cos 2λ
ρ(v′), (17′)

where p′(v), θ′(v) are derivatives of p(v), θ(v) with respect to v, and ρ(v) = limN→∞
1

N(vi+1−vi) is the density
of roots near the point v, which will be an unknown function in this equation. The interval [−vF , vF ] is
determined from the condition ∫ vF

−vF

dv

2π
ρ(v) =

n

N
. (18) rhonorm

Next, we need to minimize the energy in n/N .
The equation (17) is easily solved by the Fourier method for vF =∞. Let

ρ(v) =

∫
dk ρke

ikv, p′(v) =

∫
dk p′ke

ikv, θ′(v) =

∫
dk θ′ke

ikv. (19) Fourier

Then
ρk = p′k − θ′kρk,

i.e.
ρk =

p′k
1 + θ′k

.

It is not difficult to check that

p′k =
sh 1

2(π − λ)k

sh 1
2πk

, θ′k =
sh 1

2(π − 2λ)k

sh 1
2πk

. (20) p-theta-k
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From this we obtain
ρk =

1

2 ch 1
2λk

. (21) rhokfin

Evidently, ∫ ∞
−∞

dv

2π
ρ(v) = ρ0 =

1

2
,

and, therefore, n = N/2 and Sz/N � 1. Thus, this solution corresponds to the ground state of the system.
In the limit N → ∞ one could expect that one of the terms in (12) is much larger than the other,

therefore the (minus) free energy per vertex reads

log κ(u) ≡ lim
N→∞

log Λ(u)

N
= max

(
log a(u) +

∫ vF

−vF

dv

2π
ρ(v) log

a(iv − u+ λ/2)

b(iv − u+ λ/2)
,

log b(u) +

∫ vF

−vF

dv

2π
ρ(v) log

a(u− iv − λ/2)

b(u− iv − λ/2)

)
. (22) fe

The logarithms in the r.h.s. are easily expressed in terms of p(v):

log κ(u) = max

(
log a(u)− i

∫ vF

−vF

dv

2π
ρ(v)p(iu+ v),

log b(u)− i
∫ vF

−vF

dv

2π
ρ(v)p(i(λ− u) + v)

)
. (23) fe-p(v)

In terms of Fourier transforms it looks like

log κ(u) = max

(
log a(u) +

∫
dk

k
ρ−kp

′
ke
ku, log b(u) +

∫
dk

k
ρkp
′
ke
k(λ−u)

)
. (24) fe-fourier

By substituting (20) and (21), we find that both values under the maximum sign in (22) coincide and the
free energy is given by

log κ(u) = log a(u) +

∫ ∞
0

dk
shuk sh π−λ

2 k

2k sh π
2k ch λ

2k

= log b(u) +

∫ ∞
−∞

dk
sh(λ− u)k sh π−λ

2 k

2k sh π
2k ch λ

2k
. (25) feglfin

In the case of ∆ < −1, the sines are replaced by hyperbolic sines and the functions p′(v) and θ′(v) turn
out to be periodic in v with the period π. This means that the Fourier integral in (19) is replaced by the
Fourier series: ∫

dk

2π
→ 1

π

∑
k∈2Z

.

The Fourier components are
p′k = 2πe−λ|k|/2, θ′k = 2πe−λ|k|. (26) p-theta-k-af

The density is again given by (21), but with even integer k. Therefore, the final formula for the free energy
has the form of a series:

log κ(u) = log a(u) + u+

∞∑
m=1

e−λm sh 2um

m chλm

= log b(u) + λ− u+
∞∑
m=1

e−λm sh 2(λ− u)m

m chλm
. (27) feaffin

Note that for the general values of vF < ∞ (for |∆| < 1) or vF < π
2 (for ∆ < −1) the equation

(17) describes the ground state of a six-vertex model of the general form with, generally speaking, different
a, a′, b, b′ (a nonunit ratio of c/c′ does not affect the model at all). The equation has no analytical solution,
but can be solved numerically. In this case, two terms under the maximum sign in the free energy will be
different.
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Problems

1. Derive (4) and (5).
2. Prove the relations (10) by induction in k.
3. Show that the Bethe Ansatz (13) can be obtained from the formula (12) for the eigenvalues and the

requirement that for each eigenvalue Λ(u) the product Λ(u) sinN (λ − u) (for |∆| < 1) or Λ(u) shN (λ − u)
(for ∆ < −1) be an entire function of u.

4. Introduce the t variable, which will have the meaning of (T − Tc)/Tc near the critical point ∆ = −1.
Show that near this point the free energy is regular in the antiferroelectric region and has a weak singularity
in the disordered region:

fsing ∼ e−c/(−t)
1/2

with a certain constant c.
5∗. In the asymmetric six-vertex model with Ev = 0 in the region ∆ < 1 find the value of Eh that provides

saturation of the electric polarization: n = 0. Find the corresponding magnetic field of the saturation in the
XXZ model.1

1For ∆ < −1 there is one more critical field, which bounds the antiferroelectric (or antiferromagnetic) region. But the
calculation of this bound is more complicated and demands the calculation of the energy of one-particle excitations.
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