
Lecture 8
Heisenberg spin chain and its scaling limit

Consider a chain of N spins S = 1/2, that is, the space

HN = C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
N

, (1)

on which the Hamiltonian acts

HXY Z = −1

2

N∑
n=1

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1 + Jzσ

z
nσ

z
n+1

)
. (2)

Here σin acts on the nth component in HN , and the (N + 1)th component is identified with the first one.
Such a model is called the XYZ Heisenberg model with cyclic boundary conditions. In the case of Jx = Jy
the model is called the XXZ model , and in the case of Jx = Jy = ±Jz the it XXX model. We will assume
that N is even.

Since physics is independent of the common factor in the Hamiltonian, the following notation is usually
introduced:

Γ = Jy/Jx, ∆ = Jz/Jx (3)

It is assumed that
Jx > 0, |Γ| ≤ 1, |∆| ≤ |Γ| or |∆| ≥ 1.

Without loss of generality, we put Jx = 1. The Hamiltonian is written down as

HXY Z = −1

2

N∑
n=1

(
(1 + Γ)(σ+n σ

−
n+1 + σ−n σ

+
n+1) + (1− Γ)(σ+n σ

+
n+1 + σ−n σ

−
n+1) + ∆σznσ

z
n+1

)
. (4)

Here

σ+ =
σx + iσy

2
=

(
0 1
0 0

)
, σ− =

σx − iσy

2
=

(
0 0
1 0

)
(5)

are spin increasing and decreasing operators.
Let us apply the Jordan–Wigner transformation to this Hamiltonian:

σzn = 2a+n an − 1, σ+n = a+n exp

(
iπ

n−1∑
j=1

a+j aj

)
, σ−n = an exp

(
−iπ

n−1∑
j=1

a+j aj

)
, (6)

where an, a+n are fermion operators:

a+man + ana
+
m = δmn, aman + anam = a+ma

+
n + a+n a

+
m = 0.

The inverse transformation has the form

an = σ−n

n−1∏
j=1

(−σzj ), a+n = σ+n

n−1∏
j=1

(−σzj ). (7)

We obtain

HXY Z = −
N∑

n=1

(
1 + Γ

2
(a+n+1an + a+n an+1) +

1− Γ

2
(a+n a

+
n+1 − anan+1)

+ 2∆(a+n ana
+
n+1an+1 − a+n an)

)
. (8)

We first consider the case of XY models, i.e. Models with ∆ = 0. In this case, the Hamiltonian is
quadratic in fermions and easily diagonalized. Let

an =
1

N1/2

∑
k

ake
ikn. (9)
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Then
HXY = −

∑
k

(
(1 + Γ) cos k · a+k ak + i

1− Γ

2
sin k · (a+k a

+
−k + aka−k)

)
. (10)

Hamiltonians of this kind are diagonalized by using the Bogoliubov transform. First, consider the simple
case of Γ = 1. Obviously, the Brillouin zone −π ≤ k < π is divided into two areas: 1) −π

2 ≤ k < π
2 and

2) −π ≤ k < −π
2 or π

2 ≤ k < π. Evidently, the energies in the first region are negative and this part of the
zone will be completely filled: kF = π/2. In another way, we can say like this: the ground state of the system
|0⟩ satisfies the relation ak|0⟩ = 0 in the second region and a+k |0⟩ = 0 in the first region. This dictates the
following Bogoliubov transformation:

bk = ak−π, b+k = a+k−π, b′k = ia+k , b′+k = −iak, −π
2
≤ k <

π

2
, (11)

assuming that k is defined modulo 2π. The factors ±i are introduced arbitrarily to simplify further formulas.
Then the Hamiltonian will take the form

HXY =
∑

−π/2≤k<π/2

2 cos k (b+k bk + b′+k b
′
k).

The operators b+k , bk are creation-annihilation operators of the particles, while b′+k , b′k of the antiparticles.
In the general case, we construct the Bogoliubov transformation so that it tended to the transformation

(11) in the limit Γ → 1. Let

ak = α′
kb

′
k + β′kb

′+
−k, a+k = β′∗k b

′
−k + α′∗

k b
′+
k , |α′

k|2 + |β′k|2 = 1, α′
kβ

′
−k + α′

−kβ
′
k = 0. (12)

After substituting (12) into (10), and requiring that the terms proportional to b′+b′+ and b′b′ vanish, we get

α′
k = − sin

κ

2
, β′k = i cos

κ

2
, tg κ =

1− Γ

1 + Γ
tg k. (13)

This solution is well defined in the first half, −π/2 < k < π/2, of the Brillouin zone. The remaining half will
be transferred to the same area, and by replacing κ→ κ− π we obtain

αk = cos
κ

2
, βk = i sin

κ

2
. (14)

The Hamiltonian is equal to

HXY =
∑

−π/2<k<π/2

ϵk(b
+
k bk + b′+k b

′
k), ϵk =

√
(1 + Γ)2 cos2 k + (1− Γ)2 sin2 k. (15)

The system has a mass gap equal to (1− |Γ|). In the limit Γ → ±1, the mass gap disappears and the system
falls to a critical point, but in the vicinity of the critical point one can implement the scaling limit a→ 0 (a
is the lattice parameter) with the corresponding rescaling of the remaining parameters.

Without loss of generality, we can restrict ourselves by the limit of Γ → 1. Let pa = π/2− |k|. Then for
|p|a≪ 1 we have

ϵ(p) = 2a
√
m2 + p2, m =

1− Γ

2a
. (16)

The Hamiltonian HFF = 1
2aHXY is the Hamiltonian of free Dirac fermions.

Consider the Bogoliubov transformation near the points κ = ±π/2. Let, for example, k = π/2 − pa.
From (13) we see that for Γ → 1 the parameter κ is given by the formula

ctg κ =
|p|
m
,

and the Bogoliubov transform is trivial everywhere except in the domain p ∼ m. Of course, we are interested
in the region pa ≪ 1, but in this case the momentum p can be much larger than the mass m. In this area,
κ = 0 and the transformation takes a simple form

aπ/2−pa = ib′+−π/2+pa, aπ/2+pa = b−π/2+pa,

a−π/2+pa = ib′+π/2−pa, a−π/2−pa = bπ/2−pa, m≪ p≪ a−1.
(17)
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Now we examine the contribution of the interaction ∆ ̸= 0 in the scaling limit. It is convenient to start
from the case m = 0 (Γ = 1). First of all, by means of b±π/2+pa, b′±π/2+pa we need to introduce the standard
relativistic fermion operators. In the notation of lecture 7, the Weyl fermions should have the form

ψR(x)√
Na

=

∫ ∞

0

m
1/2
0 dp

2π
√
2p

(b−π/2+paχλ(x) + b′+−π/2+paχλ+iπ(x))

∣∣∣∣m0→0

m0e
λ=2p

=

(
1
0

)∫ ∞

0

dp

2π
(b−π/2+pae

ipx + ib′+−π/2+pae
−ipx) =

(
1
0

)∫ ∞

0

dp

2π
(aπ/2+pae

ipx + aπ/2−pae
−ipx),

ψL(x)√
Na

=

∫ 0

−∞

m
1/2
0 dp

2π
√

2|p|
(bπ/2+paχλ(x) + b′+π/2+paχλ+iπ(x))

∣∣∣∣m0→0

m0e
−λ=2|p|

=

(
0
i

)∫ 0

−∞

dp

2π
(bπ/2+pae

ipx + ib′+π/2+pae
−ipx) =

(
0
i

)∫ 0

−∞

dp

2π
(a−π/2+pae

ipx + a−π/2−pae
−ipx),

The complete Dirac fermion has the form

ψ(x) = ψR(x) + ψL(x) =

(
ψ+(x)
iψ−(x)

)
,

where
ψ±(x) =

∫ ∞

−∞

dp

2π
a±(p)e

ipx a±(p) = (Na)1/2a±π/2+pa, (18)

are written as ordinary nonrelativistic fermions in terms of a±(p) oscillators. Notice, that the initial fermions
an are expressed in terms of them as

an = a1/2(inψ−(an) + i−nψ+(an)).

Now let us rewrite the Hamiltonian in the form

H∆ ≡ 1

2a
(HXXZ +∆N/2− 2∆M) = HFF − ∆

Na

∑
q

ρqρ−q cos q, (19)

where
M = ρ0 =

∑
n

a+n an =
∑
k

a+k ak (20)

is the fermion number, and
ρq =

∑
k

a+k+qak =
∑
n

a+n ane
iqn (21)

is the Fourier transform of the corresponding current. Strictly speaking, the fermion number is exactly
conserved only at the point Γ = 1. But it also conserves in the scaling limit, so that subtracting it from the
Hamiltonian in this limit does not change anything. The main contribution to the interaction will be made
by the region of lowest energies near the points k = ±π/2. Therefore, they will have the value ρq with the
parameter q in the neighborhood of the points 0 and π. Rewrite ρq as

ρpa = ρ++(p) + ρ−−(p), ρπ+pa = ρ+−(p) + ρ−+(p), ραβ(p) =

∫
dp′

2π
a+α (p

′ + p)aβ(p
′). (22)

Substituting it into (19), we obtain

H∆ = HFF −∆

∫
dp

2π
(ρ++(p) + ρ−−(p))(ρ++(−p) + ρ−−(−p))

+ ∆

∫
dp

2π
(ρ+−(p) + ρ−+(p))(ρ+−(−p) + ρ−+(−p)).
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Passing to the coordinate representation, we obtain

H∆ = HFF −∆

∫
dx ((ψ+

+ψ+)
2 + (ψ+

−ψ−)
2 + 2ψ+

+ψ+ψ
+
−ψ− − ψ+

−ψ+ψ
+
+ψ− − ψ+

+ψ−ψ
+
−ψ+)

= HFF − 4∆

∫
dxψ+

+ψ+ψ
+
−ψ−. (23)

Here we used the commutation relations ψ+
α (x)ψβ(x) + ψβ(x)ψ

+
α (x) = a−1δαβ . In particular, (ψ+

αψ−α)
2 =

(ψ+
α )

2ψ2
−α = 0.

Comparing (23) with the formulas for the Thirring model, we conclude that

g = −2∆ (∆ ≪ 1). (24)

It is clear that this formula is true only for small ∆. It is enough to recall that the mass term ψ̄ψ in the
Thirring model does not have a mass dimension, so the scaling law (16) certainly does not hold for ∆ ̸= 0.

In deriving these formulas, I deceived you a little. The fact is that the product ψ+
αψα contains a regular

contribution. Indeed, if we bosonize the fermions by using the construction from lecture 2 for g → 0, we
obtain

ψ+
+(z

′)ψ+(z) =
i

2π

(
1

z′ − z
− i∂ϕ(x) +O(z′ − z)

)
,

ψ+
−(z̄

′)ψ−(z̄) = − i

2π

(
1

z̄′ − z̄
− i∂̄ϕ(x) +O(z̄′ − z̄)

)
.

As a result, the terms (ψ+
αψα)

2 contains contributions to the Hamiltonian proportional to (∂xϕ)
2, which

renormalizes the spatial component of the momentum [1].
Is it possible to establish an exact relation between the parameter g of the Thirring model and the

parameter ∆ of the XYZ model? This is possible since the XYZ model admits an exact solution [2].
Unfortunately, this solution is very complicated, and I cannot give it here. From the solution we can extract
the correlation length rc, which for Γ → 1 is proportional to

rc ∼
(
1−∆2

1− Γ

)1/(2−2µ/π)

, ∆ = − cosµ. (25)

Recalling that 1−Γ is proportional to the bare mass m0 in the Thirring model, and that m0 ∼ m2−β2 , where
m is the mass of physical excitations, we obtain

β2 =
2µ

π
,

g

π
=
π/2− µ

µ
. (26)

For ∆ → 0 (µ→ π/2) the expression (24) is reproduced.
Now let us try to confront operators in the field theoy to operators on the lattice in. For this purpose, it

is more convenient to use the sine-Gordon model. Recall that in the Gaussian model (corresponding to the
XXZ case) there is a symmetry

ϕ→ ϕ+ α,

where α is an arbitrary constant. In the sine-Gordon model, this symmetry is broken and α must be an
integer multiple of 2π/β:

α =
2πn

β
. (27)

The XXZ model also has continuous symmetry

σ± → e±iλσ±, σz → σz.

This symmetry corresponds to the conservation of the z-projection of the full spin

Sz =
1

2

N∑
n=1

σzn =M − N

2
. (28)
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For Γ < 1, the term is proportional to ∑
n

(σ+n σ
+
n+1 + σ−n σ

−
n+1)

and corresponding to the mass term in the Thirring model, that is, to the cosine in the sine-Gordon model,
violates this symmetry to

λ = πn. (29)

By comparing (27) with (29), we conclude that

α =
2λ

β
(30)

Therefore
σ±n σ

±
n+1 ∼ aβ

2
e±iβϕ.

Since the operator σ±n commutes with the operator σ±mσ
±
m+1 (n ̸= m,m+ 1), the corresponding operator in

the field theory must be mutually local to it. It is natural to conjecture that

σ±n ∼ aβ
2/4e±iβ

2
ϕ.

General admissible exponential operators in theory have the form

Vm,n(x) = exp

(
im

β

2
ϕ+ in

1

2β
ϕ̃

)
, m, n ∈ Z. (31)

In particular, the operator σzn is proportional to a linear combination of a∂tϕ and (−1)na1/β
2
(V0,2 − V0,−2).

The relationship between lattice and field theory variables is described in great detail in [3].
For the solution of the XXZ model, see the next lecture.
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Problems

1. Derive (8).
2. The XY chain in a magnetic field. Find the spectrum of the Hamiltonian

H = −1

2

N∑
n=1

(σxnσ
x
n+1 + Γσynσ

y
n+1 + 2hσzn).

Find the critical values of the external field h depending on Γ, at which the gap in the spectrum disappears.
3. Analogously to the reasoning (16)"– (21) investigate the case Γ → −1.
4. Show that all the operators (31) are mutually local or mutually semilocal, that is, any product

Vm1n1(x1)Vm2n2(x2) does not change when passing x2 around x1 in the complex plane, or multiplies by −1.
5*. Under the conditions of Problem 2 describe the system in the vicinity of critical lines. Show that the

critical behavior for |Γ| < 1 is described by a free Majorana fermion.
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