
Lecture 7
Thirring model: solution by the Bethe Ansatz method

Consider the massive Thirring model

SMT [ψ, ψ̄] =

∫
d2x

(
ψ̄(i∂̂ −m0)ψ − g

2
(ψ̄γµψ)2

)
(1)

with

ψ =

(
ψ+

ψ−

)
, γ0 =

(
−i

i

)
= σ2, γ1 =

(
i

i

)
= iσ1, γ3 = γ0γ1 =

(
1

−1

)
= σ3. (2)

The Hamiltonian of the Thirring model has the form

H =

∫
dx

(
−iψ+σ3∂xψ +m0ψ

+σ2ψ + 2gψ+
+ψ

+
−ψ−ψ+

)
(3)

with the commutation relations

ψ+
α′(x

′)ψα(x) + ψα(x)ψ
+
α′(x

′) = δα′αδ(x
′ − x), (4)

while the momentum P and the fermion number operator Q have the form

P = −i
∫
dxψ+∂xψ, Q =

∫
dxψ+ψ. (5)

Let us recall Dirac’s picture. The spectrum ϵ2 − p2 = m2 has two branches: ϵ = ±
√
p2 +m2. According

to the Pauli principle only one excitation can reside one state. The state of the system, in which all one-
particle states are empty, we will call a “bare vacuum” or a pseudovacuum. If we begin to fill the states
with negative energy with fermions, the energy of the system decreases. Thus the pseudovacuum is not
the ground state of the system. The ground state (the physical vacuum) will appear when we fill all states
of negative energy (“Dirac’s sea”). “Elementary excitations” above the pseudovacuum will be referred to as
pseudoparticles. Let us try to formalize this procedure.

We first consider the case of free fermions g = 0. Denote by |Ω⟩ the state that satisfies the conditions

ψα(x)|Ω⟩ = 0, ⟨Ω|ψ+
α (x) = 0. (6)

Introduce the wave function of a state of N pseudoparticles:

|χN ⟩ =
∫
dNxχα1...αN (x1, . . . , xN )ψ+

αN
(xN ) . . . ψ+

α1
(x1)|Ω⟩. (7)

States of this form are eigenvectors of the operator Q:

Q|χN ⟩ = N |χN ⟩.

Thus, the total space of states H splits into a sum over eigenvalues of Q:

H ≃
∞⊕

N=0

HN , v ∈ HN ⇔ Qv = Nv. (8)

The fermion number operator becomes the operator of the number of pseudoparticles in this picture.
The action ĤN of the Hamiltonian on the wave function χα1...αN (x1, . . . , xN ), defined by the equation

H|χN ⟩ =
∫
dNx (ĤNχ)

α1...αN (x1, . . . , xN )ψ+
αN

(xN ) . . . ψ+
α1
(x1)|Ω⟩,

has the form

ĤN =
N∑
k=1

(−iσ3k∂xk
+m0σ

2
k),
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where σik acts on the space of the kth particle. For N = 1, the eigenstate has the form

χλ(x) =

(
eλ/2

ie−λ/2

)
eixm0 shλ. (9)

The many-particle solution of the free-field Hamiltonian is given by the Slater determinant:

χα1...αN
λ1...λN

(x1, . . . , xN ) =
∑
σ

(−1)σ
N∏
k=1

χ
ασk
λk

(xσk
). (10)

The energy of the N -particle state is equal to

EN (λ1, . . . , λN ) = m0

N∑
k=1

chλk. (11)

What values can the λ parameters take? If the system is in a box of size L with the cyclic boundary
conditions, the “rapidities” λk are solutions to the equations

eim0L shλk = 1, k = 1, . . . , N. (12)

Therefore,

shλk =
2πnk
m0L

, nk ∈ Z.

This means that λk lies either on the real axis R, or on the line iπ + R. The latter solutions correspond to
negative energies. Obviously, the ground state is the state in which all states of negative energy are filled.
Let λk = iπ + ξk. To determine the vacuum energy, we introduce an ultraviolet cutoff

−Θ < ξk < Θ, Θ ≃ log
Λ

m0
. (13)

In the thermodynamic limit L→ ∞, the vacuum energy is equal to

E0 = −L
∫ Θ

−Θ

dξ

2π
ρ(ξ)m0 ch ξ, ρ(ξ) =

2π

L

∣∣∣∣dndξ
∣∣∣∣ = m0 ch ξ.

Of course, the energy of the ground state is meaningless by itself, the energies of excited states are of interest.
The excitation with the rapidity θ corresponds to an additional root at the point

λk = θ (particle),

or to a hole (lack of a root) at the point

λk = θ + iπ (antiparticle).

Since the roots of the equations (12) are unrelated to each other, we get a system of non-interacting particles
and antiparticles with p = (m ch θ,m sh θ) that obey the Pauli principle, that is, what we should have
obtained.

Now turn on the interaction. The interaction operator in (3) commutes with the pseudoparticle number
operator Q. Thus, the interaction operator acts inside the spaces HN :

ĤN =

N∑
k=1

(−iσ3k∂xk
+m0σ

2
k) + g

N∑
k<l

δ(xk − xl)(1− σ3kσ
3
l ). (14)

The construction of sigma-matrices on the right side is:

1

2
(1⊗ 1− σ3 ⊗ σ3)

α′
1α

′
2

α1α2 = δ
α′
1

α1δ
α′
2

α2δα1,−α2 , (15)
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which means that only the particles of opposite spins interact.
The interaction term in the Hamiltonian (14) is poorly defined. Indeed, the eigenfunction equation is a

first order differential equation. Thus the delta-functional term results in a discontinuity of the wave function
is on the surface xk = xl. At the same time, the action of the Hamiltonian depends on the wave function
just at this surface. The delta-function should be regularized. We show that the answer does not depend on
regularization. Consider the equation

f ′(x)− cδ(x)f(x) = g(x, f(x))

Let us regularize the delta-function by an arbitrary integrable function δa(x) with the support [−a, a]:

f ′(x)− cδa(x)f(x) = g(x, f(x)),

∫ ∞

−∞
dx δa(x) = 1. (16)

Let
δa(x) = ϵ′a(x).

Then
f ′(x)

f(x)
= cϵ′a(x) +

g(x, f(x))

f(x)
.

For small enough a the second term may be neglected, and we have

f(x) = const ecϵa(x) ⇒ f(+a) = ec(ϵa(a)−ϵa(−a))f(−a) = ecf(−a).

Hence, in the limit a→ 0 we obtain
f(+0) = ecf(−0). (17)

Single-particle states are again described by solutions (9). Consider a two-particle state. Since the
interaction is contact (nonzero only for x1 = x2), for x1 ̸= x2 the wave function is a solution to the equations
for free fermions. Thanks to the conservation laws of energy and momentum the scattering is reflectionless,
and the wave function reads

χα1α2
λ1λ2

(x1, x2) =

{
A12χ

α1
λ1
(x1)χ

α2
λ2
(x2)−A21χ

α1
λ2
(x1)χ

α2
λ1
(x2) for x1 < x2,

A21χ
α1
λ1
(x1)χ

α2
λ2
(x2)−A12χ

α1
λ2
(x1)χ

α2
λ1
(x2) for x1 > x2.

(18)

This function is evidently antisymmetric in (α1, x1), (α2, x2) and contains (up to a normalization) one free
parameter A12/A21, which should depend on the coupling constant g. A direct calculation with the aid of
(17) gives

A21

A12
= R(λ1 − λ2), R(λ) = eiΦ(λ) =

ch λ−ig
2

ch λ+ig
2

. (19)

The function R(λ) has the meaning of the scattering matrix of pseudoparticles. It is convenient to fix the
scattering phase Φ(λ) by the skew symmetry condition

Φ(−λ) = −Φ(λ), (20)

assuming that the cuts lie on the rays (i(π − |g|), i∞), (−i(π − |g|),−i∞). The quantities λk are naturally
defined modulo 2πi.

Note that the function R(λ) is periodic in g with the period 2π. Since we will build the vacuum close to
the vacuum of free fermions, it should be assumed that the solution makes sense for

−π < g < π. (21)

Now it is easy to construct a general N -particle solution (Bethe Ansatz ):

χα1...αN
λ1...λN

(x1, . . . , xN ) =
∑
τ

(−1)στAτ

N∏
k=1

χ
ασk
λτk

(xσk
) for xσ1 < . . . < xσN . (22)
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The coefficients A satisfy the relations

A...,i+1,i,... = R(λi − λi+1)A...,i,i+1,.... (23)

Impose a cyclic boundary condition

χ(. . . , xk + L, . . .) = χ(. . . , xk, . . .). (24)

We obtain

eim0L shλk

N∏
l=1
l ̸=k

R(λk − λl) = 1. (25)

This system of equations for the parameters λk is called the system of Bethe equations. Bethe equations
are nonlinear equations with N unknowns, moreover, as expected, in physically interesting cases N → ∞.
Nevertheless, a huge step has been taken: solving the problem is reduced to solving a system of algebraic
equations. Each solution to this system, i.e. each set (up to a permutation) of numbers (λ1, . . . , λN ), satisfying
(25), corresponds to a single state of the system. The components λk of the solution are called roots of the
Bethe equations.

By taking the logarithm of the Bethe equations, we find

m0L shλk +
N∑
l=1

Φ(λk − λl) = 2πnk, (26)

and the energy and momentum of the state are equal to

EN (λ1, . . . , λN ) = m0

N∑
i=1

chλi, PN (λ1, . . . , λN ) = m0

N∑
i=1

shλi. (27)

We ask ourselves: how can roots of the Bethe equations be located? Naturally, real roots and roots on the
line iπ+R are suitable. General complex roots can be located in pairs symmetrically with respect to one of
the lines R and iπ + R. A more detailed analysis shows that there can be no other types of solutions.

The Bethe equations map each solution (λ1, . . . , λN ) on a set of numbers (n1, . . . , nN ). It can be shown
that nk = nl only if λk = λl. It follows from the Pauli principle that all λk must be different and that,
therefore,

nk ̸= nl (k ̸= l). (28)

It is natural to conjecture that the solution of the Bethe equations with negative energies of “bare
particles”, i.e. with Imλk = π, corresponds to the least energy. We will write

λk = iπ + ξk.

To minimize the energy, it is necessary to fill all the states of negative energy, therefore it is necessary that
the integers nk were consecutive integers:

nk+1 − nk = ±1, (29)

and it is convenient to choose the sign so that the value ξk grew with k. Therefore we assume

nk = k0 − k

with a certain k0. Then

m0L sh ξk = 2π(k − k0) +

N∑
l=1

Φ(ξk − ξl). (30)

In the thermodynamic limit L→ ∞ the distance between the levels tends to zero, and this equation can be
differentiated with respect to ξk. We will obtain

m0 ch ξ = ρ(ξ) +

∫ Θ

−Θ

dξ′

2π
Φ′(ξ − ξ′)ρ(ξ′). (31)
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Here
ρ(ξ) =

2π

L

dk

dξ
(32)

is the spectral density of states related with the number of pseudoparticles N in a state by the formula∫ Θ

−Θ

dξ

2π
ρ(ξ) =

N

L
. (33)

For Θ → ∞ the value of m0 tends to zero for g > 0 and to infinity for g < 0. For g > 0 it can be shown
that ρ(ξ)/m0 → ∞. Therefore, you should look for a formal solution to the homogeneous equation, which is
obtained from (31) for m0 = 0, Θ → ∞. It has the form

ρ(ξ) = const · ch πξ

π + g
. (34)

The proportionality coefficient can be found by a more accurate calculation, and it turns out to be finite.
Consider now the fermion sea with holes.1 To do this, let us generalize the equation (30):

m0L sh ξk = −2πnk +

N∑
l=1

Φ(ξk − ξl). (35)

Next, let us define ξ(n) by the equation

m0L sh ξ(n) = −2πn+

N∑
l=1

Φ(ξ(n)− ξl) (36)

Let us determine the density of states ρ(ξ) and the density of holes ρ◦(ξ) = ρ(ξ)− ρ•(ξ) as follows:

ρ(ξ(n)) =
2π

L|ξ(n+ 1)− ξ(n)|
≃ 2π

L

∣∣∣∣ dn

dξ(n)

∣∣∣∣ , ρ•(ξ) =

〈
2π

L|ξk+1 − ξk|

〉
ξk≃ξ

=

〈
2π

L

∣∣∣∣ dkdξk
∣∣∣∣〉

ξk≃ξ

. (37)

In particular, for one hole with the parameter ξ = ξ0 we have ρ◦(ξ) = 2πL−1δ(ξ − ξ0). Then the system of
equations looks as follows:

m0 ch ξ = ρ(ξ) +

∫ Θ

−Θ

dξ′

2π
Φ′(ξ − ξ′)(ρ(ξ′)− ρ◦(ξ′)). (38)

Denoting by ρ0(ξ) the solution to the equation (31) and subtracting this equation from (38), we obtain

δρ(ξ) +

∫ Θ

−Θ

dξ′

2π
Φ′(ξ − ξ′)δρ(ξ′) =

∫ Θ

−Θ

dξ′

2π
Φ′(ξ − ξ′)ρ◦(ξ′). (39)

Here
δρ(ξ) = ρ(ξ)− ρ0(ξ).

In the limit Θ → ∞ this equation is easily solved by the Fourier method. Indeed, let

Φ̃′(ω) =

∫ ∞

−∞

dξ

2π
Φ′(ξ)eiξω, δρ̃(ω) =

∫ ∞

−∞

dξ

2π
δρ(ξ)eiξω, ρ̃◦(ω) =

∫ ∞

−∞

dξ

2π
ρ◦(ξ)eiξω.

Applying the Fourier transform to the equation (39), we obtain the algebraic equation

δρ̃(ω) + Φ̃′(ω)δρ̃(ω) = Φ′(ω)ρ̃◦(ω).

1Unfortunately, an error was made in the initial version of the lecture when considering the sea of fermions with one additional
particle. I am grateful to I. Protopopov, who noticed it while solving a problem. A study of an additional particle, in fact,
requires consideration of the so-called string solutions of the Bethe equations.
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It is easy to check that

Φ̃′(ω) = − sh gω

shπω
, δρ̃(ω) = − sh gω

2 sh π−g
2 ω ch π+g

2 ω
ρ̃◦(ω). (40)

We begin the study of the solution (40) from calculating the charge of the excitation that corresponds to
a hole. It would seem that the hole charge should be equal to N −N0 = −1. To make sure this is not the
case, take into account the ultraviolet cutoff. When the density of holes changes, the density of states also
changes, so that the number of states under the cutoff, that is, in the interval −Θ < ξ < Θ also changes. We
will be interested in two quantities:

∆N = −L
∫ Θ

−Θ

dξ

2π
ρ◦(ξ) = −Lρ̃◦(0),

∆Q = L

∫ Θ

−Θ

dξ

2π
(δρ(ξ)− ρ◦(ξ)).

(41)

In the first line we used the assumption that all holes are under the cutoff, that is, ρ◦(ξ) = 0 for |ξ| > Θ.
The ratio

z◦ = −∆Q

∆N
(42)

gives the charge of a hole. By computing

∆Q = −L
∫ Θ

−Θ

dξ

2π

∫ ∞

−∞
dω e−iωξ shπω

2 sh π−g
2 ω ch π+g

2 ω
ρ̃◦(ω) ≃ π

π − g
∆N, (43)

we find
z◦ = − π

π − g
. (44)

We see that the charge of a hole is not an integer in terms of pseudoparticles. In other words, the particle
charge is renormalized.

This renormalization has a significant consequence. To understand it, let us return to the derivation
of the Hamiltonian (3). We formally derived it according to classical rules from the classical action. The
quantum effect is that one physical particle amounts |z◦| pseudoparticles defined in (7):

Q = |z◦|
∫
dxψ+

physψphys + const , (45)

where ψphys are physical fields, that is, just those fields that were discussed in lecture 2. It means that

ψ = |z◦|1/2ψphys. (46)

Substituting it into the Hamiltonian (3), we see that the physical constant gphys (which was denoted as g in
lecture 2) is related to the formal constant g as

gphys = g|z◦| = g

1− g/π
⇔ 1

gphys
=

1

g
− 1

π
. (47)

If the formal coupling constant varies within −π ≤ g < π, then the physical one varies within −π
2 ≤ gphys <∞

in accordance with the results of the bosonization.
The energy E[ρ◦] and the momentum P [ρ◦] of the system are functionals of the hole density ρ◦, and the

excitation energy is defined as the difference E[ρ◦]− E[0]. We have

E[ρ◦]− E[0] = m0L

∫ Θ

−Θ

dξ

2π
(ρ◦(ξ)− δρ(ξ)) ch ξ,

P [ρ◦] = m0L

∫ Θ

−Θ

dξ

2π
(ρ◦(ξ)− δρ(ξ)) sh ξ.
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The situation here is different for positive and for negative g.
For g < 0 the integrals in these expressions converge as Θ → ∞. But if we put Θ = ∞, we obtain that

E[ρ◦]− E[0] = P [ρ◦] = 0, since δρ̃(±i) = ρ̃◦(±i). Therefore, the bare mass m0 should be renormalized. An
explicit calculation of the first correction related to the poles of the function δρ̃(ω) at the points ω = ± iπ

π+g
gives

E[ρ◦]− E[0] = L

∫ ∞

−∞

dξ

2π
ϵ(ξ)ρ◦(ξ), P [ρ◦] = L

∫ ∞

−∞

dξ

2π
p(ξ)ρ◦(ξ) (48)

where
ϵ(λ) = m ch

πλ

π + g
, p(λ) = m sh

πλ

π + g
, m =

M

g
ctg

(
π

2

π − g

π + g

)
, (49)

and the constant M is defined by the equality

m0 =M exp

(
− g

π + g
Θ

)
∼M

(m0

Λ

)g/(π+g)
. (50)

Thus, the particles have a relativistic spectrum with the rapidity

θ =
πξ

π + g
. (51)

Comparing (50) with our previous estimation

m0 ∼M2−β2
, (52)

where β is the coupling constant of the sine-Gordon model, we obtain the relation

g

π
= 1− β2.

Recalculating the physical coupling constant, we obtain the relation

gphys

π
= β−2 − 1,

given in Lecture 2. The formal coupling constant g and the physical coupling constant gphys coincide in the
first order in perturbation theory, but differ in the higher orders. This difference must be taken into account
when interpreting accurate results.

For g > 0 the situation is somewhat different. The poles of the function δρ̃(ω) for ω = ±iπ/(π + g)
become closer to the real axis than the points ±i. This means that the integrals in the formulas for the
momentum and the energy diverge, which corresponds to m0 → 0. Strictly speaking, an explicit calculation
of δρ(ξ) and then of the integrals for the energy and the momentum of excitations is required. However, this
whole procedure leads to answers obtained by analytic continuation from the region g < 0. This means that
the formula for the mass renormalization (50) is valid in this case as well.

What else can be obtained from the formulas (40)? It turns out that the hole scattering matrix is
immediately extracted from them. To do this, consider the “spinless” fermions of mass m with the scattering
matrix S(θ) = eiΨ(θ), Ψ(−θ) = −Ψ(θ). Suppose that these fermions live in a space of length L with cyclic
boundary conditions. In exactly the same way as (25) we obtain

eimL sh θk

N∏
l=1
l ̸=k

S(θl − θk) = 1. (53)

Take logarithm of the equations:

mL sh θk +
N∑
l=1

Ψ(θk − θl) = 2πnk. (54)
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and make the thermodynamic limit. To do this, let us define θ(n) by the equation

mL sh θ(n) =
N∑
l=1

Ψ(θ(n)− θl) = 2πn. (55)

Then arrange nk in the ascending order and set

ρ∗(θ(n)) =
2π

L|θ(n+ 1)− θ(n)|
≃ 2π

L

∣∣∣∣ dn

dθ(n)

∣∣∣∣ , ρ•∗(θ) =

〈
2π

L|θk+1 − θk|

〉
θk≃θ

=

〈
2π

L

∣∣∣∣ dkdθk
∣∣∣∣〉

θk≃θ

. (56)

The quantity ρ∗(θ) has the meaning of density of states, while the value ρ•∗(θ) has the meaning of particle
density. Then the equation for the density of states takes the form

m ch θ +

∫ ∞

−∞

dθ′

2π
Ψ′(θ − θ′)ρ•∗(θ

′) = 2πρ∗(θ). (57)

At zero particle density ρ•∗ we have ρ∗0(θ) = m ch θ. Assuming δρ∗ = ρ∗ − ρ∗0, we have

δρ∗(θ) =

∫ ∞

−∞

dθ′

2π
Ψ′(θ − θ′)ρ•∗(θ

′). (58)

We pass to the Fourier transforms

δρ̃∗(ω) =

∫
dθ

2π
δρ∗(θ)e

iθω etc.

The equation (58) takes the form
δρ̃∗(ω) = Ψ̃′(ω)ρ•∗(ω). (59)

Now suppose that the auxiliary fermions are nothing but our holes. Given (51) we identify

δρ∗(θ) = αδρ(αθ), ρ•∗(θ) = αρ◦(αθ), α = 1 +
g

π
= 2− β2. (60)

We have
δρ̃∗(ω) = ρ̃(α−1ω), δρ̃•∗(ω) = ρ̃◦(α−1ω). (61)

Under this assumption, comparing (61) with (40), we obtain

Ψ(θ) = i

∫ ∞

−∞

dω

ω

sh πω
2 sh π(p−1)ω

2

shπω sh πpω
2

e−iθω = 2

∫ ∞

0

dω

ω

sh πω
2 sh π(p−1)ω

2

shπω sh πpω
2

sin θω, (62)

where the parameter p is defined by the relation

β2 = 2
p

p+ 1
.

The function S(θ) = eiΨ(θ) is actually the scattering matrix for only one type of particles, antifermions
in the massive Thirring model. We need to find the S-matrix in the form of a 4 × 4 matrix in the basis
(++,+−,−+,−−) (“+” corresponds to the fermions, and “−” to the antifermions):

S(θ) =
(
Sα1α2
β1β2

(θ)
)
=


a(θ)

b(θ) c(θ)
c(θ) b(θ)

a(θ)

 . (63)

Here a(θ) = eiΨ(θ) corresponds to the scattering of particles of the same kind and can also be written as

a(θ) =
Γ
(
1
p

)
Γ
(
1 + iθ

πp

)
Γ
(
1
p + iθ

πp

) ∞∏
n=1

Rn(θ)Rn(iπ − θ)

Rn(0)Rn(iπ)
, Rn(θ) =

Γ
(
2n
p + iθ

πp

)
Γ
(
1 + 2n

p + iθ
πp

)
Γ
(
2n+1
p + iθ

πp

)
Γ
(
1 + 2n−1

p + iθ
πp

) . (64)
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The ratios of the coefficients b(θ)/a(θ) and c(θ)/a(θ) can be found by solving the Young–Baxter equation in
conjunction with the crossing symmetry equation. The answer is

b(θ)

a(θ)
=

sh θ
p

sh iπ−θ
p

,
c(θ)

a(θ)
=

sh iπ
p

sh iπ−θ
p

. (65)

The formula (64) makes it easy to find the singularities of the functions a(θ), b(θ) and c(θ) on the imaginary
axis. A singularity in the interval (0, iπ) (i.e. on the physical sheet) corresponds to a bound state, if the sign
of its residue in iθ is negative. For 0 < p < 1 (0 < β2 < 1) there are such poles in b(θ) and c(θ):

θn = iπ − iπpn, n = 1, 2, . . . ,

⌊
1

p

⌋
. (66)

This corresponds to neutral bound states (breathers in the sine-Gordon model) with masses

Mn = 2m sin
πpn

2
(67)
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Problems

1. Obtain (3) from (1). Derive (14).
2. Obtain (9).
3. Obtain (19).
4. Obtain the relations (48)–(49).
5∗. By using the Bethe Ansatz method, find the wave function of a system of N identical nonrelativistic

bosons interacting due to the potential
U(x) = cδ(x).

Find a system of Bethe equations for them Find the spectrum of the Hamiltonian in two limits: c→ ∞ and
c→ +0.
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