
Lecture 6
O(N)-model: integrability and the exact S-matrix

Consider the O(N)-model with the action

S[n, ω] =
1

2g

∫
d2x ((∂µn)

2 − ω(n2 − 1))

and the classical equations of motion:

∂µ∂µn+ ωn = 0, n2 = 1.

In the light cone coordinates z, z̄ we have for the action

S[n, ω] = −1

g

∫
dz dz̄

(
∂n∂̄n+

ω

4
(n2 − 1)

)
, (1)

and for the equations of motion we have

4∂∂̄n = ωn, n2 = 1. (2)

The action (1) is invariant with respect to pseudoconformal transformations

n(z, z̄) → n(f1(z), f2(z̄)), ω(z, z̄) → f ′1(z)f
′
2(z̄)ω(f1(z), f2(z̄)). (3)

The transformations include, in particular, translations

f1(z) = z + c, f2(z̄) = z̄ + c̄,

scaling and Lorentz transformations, for which

f1(z) = λz, f2(z̄) = λ̄z̄,

and the inversion transformation
f1(z) = 1/z, f2(z̄) = 1/z̄.

In the Minkowski space the parameters with and without a bar are real and unrelated, while in the Euclidean
space they are complex and complex conjugate.

Upon transition to the Euclidean space the translations, the scale transformation and inversion form a
global conformal group consisting of conformal transformations, which are one-to-one transformations on
the sphere C ∪ {∞}. Local conformal transformations, that is, transformations that are one-to-one only on
certain domains, are given in this case by arbitrary analytic functions f(z) ≡ f1(z) = f2(z̄).

In the meantime, we continue consideration in the Minkowski space. The energy-momentum tensor has
the form

Tzz =
1

g
(∂n)2, Tz̄z̄ =

1

g
(∂̄n)2, Tzz̄ = Tz̄z = − ω

4g
(n2 − 1).

On the equations of motion the component Tzz̄ = Tz̄z vanishes, that is, Tµ
µ = 0, which expresses the scale

invariance of the model. The energy-momentum conservation is written as

∂̄(∂n)2 = 0, ∂(∂̄n)2 = 0. (4)

In most cases, energy and momentum are the only local integrals of motion, but in the case of the O(N)-
model this is not so. First, there exists a trivial integral of motion in the form of a square of the energy-
momentum tensor:

∂̄(∂n)4 = 0, ∂(∂̄n)4 = 0. (5)

Second, it is easy to obtain the relation

4∂̄(∂2n)2 = ∂(ω(∂n)2)− 3∂ω(∂n)2, 4∂(∂̄2n)2 = ∂̄(ω(∂̄n)2)− 3∂̄ω(∂̄n)2. (6)
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Now we will show that this equation means the existence of an additional integral of motion. Since (∂n)2 is
conserved, by using the pseudoconformal transformation z = f1(z

′) such that

dz′ =

∣∣∣∣∂n∂z
∣∣∣∣ dz,

it is possible to achieve that in the new coordinates

(∂n)2 = 1.

Then (6) reduces to the form of the continuity equation

∂̄(∂∂n)2 = ∂(2∂n∂̄n).

In fact (although this is not easy to show), the model has an infinite number of integrals of motion in
involution.

We know that in the quantum case the (pseudo) conformal invariance of the model is violated, since
the field ω acquires a nonzero average. Therefore, the arguments with conformal transformations lose their
power. In the quantum case in the equations, from which the conservation laws follow, anomalies should
arise. The anomalous terms should not violate the scale invariance of the equations, into which conservation
laws turn. Therefore, for example, in the right-hand side of the energy-momentum conservation law, only
one anomalous term is allowed, which reduces to a total derivative

∂̄(∂n)2 = −β∂ω. (7)

Analogously the relation (5) is modified. The r.h.s. is not already a total derivative:

∂̄(∂n)4 = −(2β + α′)(∂n)2∂ω + ∂(. . .). (8)

The same for (6):
4∂̄(∂2n)2 = −(3 + α)(∂n)2∂ω + ∂(. . .). (9)

From these three equations, one conservation law can be compiled:

∂̄

(
4(∂2n)2 − 3 + α

2β + α′ (∂n)
4

)
= ∂(. . .). (10)

So, there are at least two integrals of motion of spin 1 and spin 3:

I1 =

∫
dz (∂n)2, I3 =

∫
dz

(
4(∂2n)2 − 3 + α

2β + α′ (∂n)
4

)
. (11)

These integrals satisfy the equation ∂̄Is = 0. The integrals I−1, I−3, which satisfy the equation∂I−s = 0 can
be obtained by the substitution z ↔ z̄. When passing to the usual coordinates x, t, both of these quantities
remain integrals of motion.

It is possible to show that these integrals commute. Fro the existence of four integrals of motion one can
conclude that multiple production of particles in a collision of two particles is impossible.

Let |θ1, . . . , θn⟩ be an asymptotic state of n particles with rapidities θ1, . . . , θn. Using the fact that
pz = −m

2 e
θ, pz̄ = m

2 e
−θ, it is easy to check that

I±1|θ1, . . . , θn⟩ = const

n∑
i=1

me±θi |θ1, . . . , θn⟩,

I±3|θ1, . . . , θn⟩ = const

n∑
i=1

m3e±3θi |θ1, . . . , θn⟩.

From this we get four equations for the scattering of two particles into n particles:

esθ1 + esθ2 =

n∑
i=1

esθ
′
i (s = −3,−1, 1, 3).
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If we fix the particle rapidities in the final state, there will be four equations for two unknowns. These
equations can have solutions only for special values of final rapidities θ′1, . . . , θ′n. But from the analyticity of
the amplitudes it follows that the amplitudes of such processes should be identically equal to zero. The only
exception is the case n = 2, when the amplitudes can contain δ-functions corresponding to the boundary
values of the poles off the mass shell.

It can be shown that the model contains an infinite number of integrals of motion Is with odd spins s.
In the general case, we have

Is|θ1, . . . , θn⟩ = const

n∑
i=1

esθi |θ1, . . . , θn⟩.

It follows that the model only admits scattering of n particles in n ones, and the particles can only exchange
momenta.

Now do the important
Factorized scattering assumption. The scattering amplitude of n particles into n particles factorizes

into the product of all pairwise scattering amplitudes in any order with summation over the internal states
of the intermediate particles.

Graphically, this assumption can be represented as follows:

p1

p1

p2

p2

p3

p3

p4

p4

=

p1

p1

p2

p2

p3

p3

p4

p4

(12)

In principle, the factorized scattering conjecture can be checked in the diagram technique order by order
in 1/N . But one can use the following qualitative consideration. Suppose that there is a finite radius of
interaction of particles R, beyond which virtual particles are almost not born. This means that if |xi−xj | ≫ R
(∀i, j), the wave function almost indistinguishable from the wave function n free particles. Due to the
existence of I±3, pairwise scattering of particles can be reduced to the passage of particles through each
other with a change in internal states. Therefore, one can choose a basis of wave functions without any
reflected waves. Let σ, τ be elements of the permutation group Sn of the numbers 1, . . . , n. Then the system
of n bosons will be described by the wave function

ψβ1p1,...,βnpn(α1x1, . . . , αnxn) =
∑
τ∈Sn

A
ασ1 ...ασn

β1 ...βn
[τ ]ei

∑n
i=1 pτixσi

for xσ1 < xσ2 < · · · < xσn , |xi − xj | ≫ R. (13)

We have omitted the dependence of the coefficients A on the momenta. It is easy to verify that the function
(13) is symmetric with respect to the permutations of the pairs αixi ↔ αjxj .

We have not yet defined the meaning of the parameters βi. In principle, we may not do this. But if we
want βi to match, say, the state αi of the incoming particle i, we can require

Aα1...αn
β1...βn

[id] =

n∏
i=1

δαi
βi
.

For p1 > p2 > · · · > pn, the parameters βi naturally describe the internal states of the incoming particles.
Although with this definition we lose symmetry with respect to permutations of the pairs βipi ↔ βjpj , but
the functions become analytic in the momenta.

The permutation of two particles is equivalent to the scattering of these particles. Of course, scattering
changes the actual states of the particles αi, and not the labels of the wave function βi. Let si ∈ Sn be a
permutation of the numbers i and i+ 1, that is, sii = i+ 1, sii+1 = i, sij = j (j ̸= i, i+ 1). Then

A
α1...αi+1αi...αn

β1...βi βi+1...βn
[τsi] =

∑
α′
iα

′
i+1

S
αiαi+1

α′
iα

′
i+1

(pτi , pτi+1)A
α1...α′

iα
′
i+1...αn

β1...βi βi+1...βn
[τ ]. (14)
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Now we permute three consecutive particles, for example, 123 → 321. Such a transition can be performed
in two ways:

132 → 312
↗ ↘

123 321.
↘ ↗

213 → 231

The first way leads to the relation

Aα3α2α1...
··· [321 . . .] =

∑
β1,β2,β3

( ∑
γ1,γ2,γ3

Sα1α2
γ1γ2 (p1, p2)S

γ1α3

β1γ3
(p1, p3)S

γ2γ3
β2β3

(p2, p3)

)
Aβ1β2β3...

··· [123 . . .]. (15)

It is easier to write it down in the matrix form

A321... = S12(p1, p2)S13(p1, p3)S23(p2, p3)A123...,

where the 1, 2, 3 subscripts indicate the number of the space, on which the matrices act or in which the
vectors live. It is even more convenient to depict it graphically

∑
internal lines

p3

β3
γ3

α3

p2

β2

γ2

α2

p1

β1

γ1
α1

The second method leads to a different relation

Aα3α2α1...
··· [321 . . .] =

∑
β1,β2,β3

( ∑
γ1,γ2,γ3

Sα2α3
γ2γ3 (p2, p3)S

α1γ3
γ1β3

(p1, p3)S
γ1γ2
β1β2

(p1, p2)

)
Aβ1β2β3...

··· [123 . . .], (16)

or, simpler,
A321... = S23(p2, p3)S13(p1, p3)S12(p1, p2)A123...,

or, graphically,

∑
internal lines

p3

β3

γ3
α3

p2

β2

γ2

α2

p1

β1 γ1

α1

The condition that (15) and (16) lead to the same relation is called the Yang–Baxter equation and is written
down as∑

γ1,γ2,γ3

Sα1α2
γ1γ2 (p1, p2)S

γ1α3

β1γ3
(p1, p3)S

γ2γ3
β2β3

(p2, p3) =
∑

γ1,γ2,γ3

Sα2α3
γ2γ3 (p2, p3)S

α1γ3
γ1β3

(p1, p3)S
γ1γ2
β1β2

(p1, p2), (17)

or, shorter,
S12(p1, p2)S13(p1, p3)S23(p2, p3) = S23(p2, p3)S13(p1, p3)S12(p1, p2), (18)

or, graphically,

p3

β3

α3

p2

β2

α2

p1

β1

α1

=

p3

β3

α3

p2

β2

α2

p1

β1

α1

(19)
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Two graphs on (19) differ in the position of one of the lines (for example, the second). In the first graph, it
lies to the left of the vertex, where the first and third particles intersect, and in the second, to the right of
it. In other words, the Yang–Baxter equation expresses the condition that the lines in (12) can be shifted
as you like, passing through the vertices. That is, it does not matter in which order we consider pairwise
scattering of particles: in any case we will get the same answer.

The second condition on the S-matrix is more elementary. Let us return to the relation (14). It is clear
that if we twice permute two consecutive indices in the coefficients A, i.e., perform the transformations

12 → 21 → 12,

we must get an identical transformation. This implies the unitarity condition∑
γ1,γ2

Sα1α2
γ1γ2 (p1, p2)S

γ2γ1
β2β1

(p2, p1) = δα1
β1
δα2
β2
, (20)

or
S12(p1, p2)S21(p2, p1) = 1, (21)

or

β2

α2

β1

α1

=

β2

α2

β1

α1

(22)

The last crossing invariance condition is only true in a relativistic theory. It is natural to immediately
write it graphically:

p2

β2

α2

p1

β1

α1
=

p2

β2

α2

β̄1

ᾱ1

−p1

(23)

Here the momenta p1 and p2 are understood as spatially-temporal momenta, the bar over the index of the
internal state of a particle represents the antiparticle. Formally it is written like this

Sα1α2
β1β2

(p1, p2) =
∑
α′
1β

′
1

Cβ1β′
1
S
α2β′

1

β2α′
1
(p2,−p1)Cα′

1α1
, (24)

where C is the CPT conjugation matrix.
If we express the momenta in terms of rapidities, we obtain:

1. Yang–Baxter equation

S12(θ1 − θ2)S13(θ1 − θ3)S23(θ2 − θ3) = S23(θ2 − θ3)S13(θ1 − θ3)S12(θ1 − θ2). (25)

2. Unitarity
S12(θ)S21(−θ) = 1. (26)

3. Crossing symmetry
S12(θ) = C1S21̃(iπ − θ)C1, (27)

where the tilde above the digit 1 means the transposition in the indices corresponding to this space.
The bootstrap conditions (25–27) are extremely restrictive. Together with the symmetry of the model

and analyticity conditions, they make it possible to find an exact expression for the S-matrix. Consider
the analyticity conditions. The S-matrix is a meromorphic function of θ. The area that corresponds to the
physical sheet is

0 ≤ Im θ < π, (28)
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+ = (31)

+ = (32)

+
S2 + S3

+
S2 + S3

+ S1 + S2 = (33)

Figure 1: Equations (31)–(33) depicted schematically. Connection of two lines of the same color at a vertex
corresponds a Kronecker symbol in the S-matrix. On intersections of two lines of the same color we mark
the corresponding contribution to the S-matrix.

and the point θ = iπ corresponds to the branch point s = (m1 −m2)
2 in the variable

s = m2
1 +m2

2 + 2m1m2 ch θ,

and the point θ = 0 corresponds to the point s = (m1 +m2)
2. The line Im θ = π corresponds in the s-plane

to the left cut (−∞, (m1 −m2)
2], while the line Im θ = 0 corresponds to the right cut [(m1 +m2)

2,∞).
On the imaginary axis the S-matrix is real:

S(iu) ∈ R for u ∈ R, (29)

and all the poles of the S-matrix on the physical sheet are situated on the imaginary axis. Some of these
poles correspond to bound states, however, additional study is usually required to determine whether a given
pole corresponds to a bound state.

Let us solve the Young–Baxter equation for O(N)-symmetric (N ≥ 3) S-matrix of the size N2 ×N2 of
the form [1]

Si′j′

ij (θ) = δi′j′δijS1(θ) + δi′iδj′jS2(θ) + δj′iδi′jS3(θ). (30)

The Yang–Baxter equation for it takes the form (Fig. 1)

S2(θ)S3(θ + θ′)S3(θ
′) + S3(θ)S3(θ + θ′)S2(θ

′) = S3(θ)S2(θ + θ′)S3(θ
′), (31)

S2(θ)S1(θ + θ′)S1(θ
′) + S3(θ)S2(θ + θ′)S1(θ

′) = S3(θ)S1(θ + θ′)S2(θ
′), (32)

NS1(θ)S3(θ + θ′)S1(θ
′) + S1(θ)S3(θ + θ′)(S2(θ

′) + S3(θ
′)) + (S2(θ) + S3(θ))S3(θ + θ′)S1(θ

′)

+S1(θ)(S1(θ + θ′) + S2(θ + θ′))S1(θ
′) = S3(θ)S1(θ + θ′)S3(θ

′). (33)

To solve this system introduce the notation h(θ) = S2(θ)/S3(θ). The first equation reads

h(θ) + h(θ′) = h(θ + θ′).

Therefore, h(θ) ∼ θ and

S3(θ) = −iλ
θ
S2(θ). (34)

Now let g(θ) = S2(θ)/S1(θ). Substituting (34) into (32), we obtain

g(θ + θ′)− g(θ′) =
θ

iλ
.

This equation has a solution

g(θ) =
θ − iκ

iλ
.
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+ = (39)

+ = 0 (40)

+
S2 + S3

+
S2 + S3

= 0 (41)

Figure 2: Equations (39)–(41) depicted schematically.

Substituting it into (33), we get

κ =
N − 2

2
λ.

It meas that
S1(θ) = − iλ

i(N − 2)λ/2− θ
S2(θ). (35)

This is the most general solution to the Yang–Baxter equation, which depends on an arbitrary function S2(θ)
and an arbitrary parameter λ. Let us now use the conditions of crossing invariance and unitarity to fix S2
and λ.

The crossing symmetry condition has the form

S2(θ) = S2(iπ − θ), (36)
S1(θ) = S3(iπ − θ). (37)

Substituting here (34) and (35), we obtain

λ =
2π

N − 2
. (38)

The unitarity condition (Fig. 2)

S2(θ)S2(−θ) + S3(θ)S3(−θ) = 1, (39)
S2(θ)S3(−θ) + S3(θ)S2(−θ) = 0, (40)

NS1(θ)S1(−θ) + S1(θ)(S2(−θ) + S3(−θ)) + (S2(θ) + S3(θ))S1(−θ) = 0 (41)

S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (42)

Now we have to solve the equations (36) and (42) together. It is clear that the solution to these equations
is ambiguous. A solution turns into a solution, if you multiply it by a function

sh θ + i sinα

sh θ − i sinα

with arbitrary α. We will look for a “minimal” solution, that is, a solution that will have the least number
of zeros and poles on the physical sheet.

From (42) we conclude that S2(θ) has a simple zero at the point θ = 0. From the crossing symmetry
(36) we immediately conclude that a simple zero also exists at the point θ = iπ. From the unitarity we find
that there is a pole at the point θ = −iπ. Continuing alternately applying the crossing symmetry and the
unitarity, we find a set of poles and zeros of the function S2(θ):

Zeros: θ = −2πin, iπ + 2πin,

Poles: θ = −iπ − 2πin, 2πi+ 2πin, n = 0, 1, 2, . . .
(43)
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Another set of zeros and poles is obtained as follows. From (42) it follows that S2 must have a pole at one of
the points θ = ∓iλ. Let us denote solutions with such poles as S(±)

2 (θ). By reasoning as before, we obtain
for S(±)

2 (θ)
Zeros: θ = ∓iλ− iπ − 2πin,±iλ+ 2πi+ 2πin,

Poles: θ = ∓iλ− 2πin,±iλ+ iπ + 2πin, n = 0, 1, 2, . . .
(44)

Gathering (43), (44), we obtain

S
(±)
2 (θ) = Q(±)(θ)Q(±)(iπ − θ), Q(±)(θ) =

Γ
(
± λ

2π − i θ
2π

)
Γ
(
1
2 − i θ

2π

)
Γ
(
1
2 ± λ

2π − i θ
2π

)
Γ
(
−i θ

2π

) . (45)

By expanding the S-matrix (34), (35), (45) with (38) in powers of 1/N , we obtain

S
(±)
1 (θ) = − 2πi

N(iπ − θ)
, (46)

S
(±)
2 (θ) = 1∓ 2πi

N sh θ
, (47)

S
(±)
3 (θ) = −2πi

Nθ
. (48)

This allows us to identify S(+)(θ) with the S-matrix of the O(N)-model, and S(−)(θ) with the S-matrix of
the N -component Neveu–Schwartz model. Notice that S(±)

1 (0) = S
(±)
2 (0) = 0, S(±)

3 (0) = ∓1. It means that

S
(±)
12 (0) = ∓P12, (49)

where P12 : a×b 7→ b×a is the permutation operator of the spaces 1 and 2. This means that for the particles
in the O(N)-model a kind of the Pauli principle applies, although we considered the particles to be bosons.
Two particles cannot have the same momentum.

In fact, in two-dimensional space-time it cannot be said whether the particle is a boson or a fermion.
If we talk about the spin, then we do know what the spin of an operator is, but we do not know what the
spin of a state is, since there are no rotations in a one-dimensional space. Besides, in one spatial dimension
there is a way to construct a Clifford algebra (fermion algebra) from the Heisenberg algebra (boson algebra)
and vice versa [2]. This transformation respects the concept of a particle, but changes the nature of the
interaction. Namely, the scattering matrix of particles as fermions differs from the scattering matrix of the
same particles as bosons by a sign.
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Problems

1. Obtain the equation (6).
2. Write explicitly the asymptotic expression for the wave function (13) for two and three particles

(n = 2, 3). Having accepted the condition (14) for n = 2 for the definition of the S-matrix, make sure that
this implies (14) for the n = 3 case. Show that the product of three S-matrices S12S13S23 actually has the
meaning of a three-particle S-matrix.

3. Derive (46–48).
4. Show that (49) implies the Pauli principle for interacting boson particles: two particles cannot have

the same momentum.
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5∗. Show that the 4× 4 matrix of the form

S(θ) =
(
Sα1α2
β1β2

(θ)
)
=


a(θ)

b(θ) c(θ)
c(θ) b(θ)

a(θ)


(the indices α1α2 are ordered as ++,+−,−+,−−) satisfies the Yang–Baxter equation, if

b(θ)

a(θ)
=

sh θ
p

sh iπ−θ
p

,
c(θ)

a(θ)
=

sh iπ
p

sh iπ−θ
p

for arbitrary p.
Such a S-matrix is a soliton scattering matrix in the sine-Gordon model with β2 = 2 p

p+1 for a suitable
a(θ) such that a(0) = −1. Show that a(θ) should satisfy the conditions

a(θ) =
sh iπ−θ

p

sh θ
p

a(iπ − θ), a(θ)a(−θ) = 1.
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