Lecture 5
O(N)-model: 1/N-expansion

Consider the general O(N)-model in the Minkowski space:
1
S[n] = 2% /dzaz (9um)?, n? = 1.

It is convenient to introduce an auxiliary field w(x) and write down the action in the form
1
Stnul = o [ (0,m) — wln? - 1),
9
where now the vector n runs through any values in RY. Consider the functional integral
Z[J] = /Dw Dn eiSnwltig™ /2 [dadn,

The integral over n is Gaussian. Take it. Notice that
1/ n; n; n; w
; g~ 1/2 2 - L 7. ; 2
iS[n,w] +ig /d xdn = 5 <gl/2,K(w)5Ugl/2> + (ZJ“gl/Q) —i—z/d x 2%’

K(w) =i(9% + w).

where

From this we obtain

w 1

ZJ] = /Dw (det(@i +w)) M2 exp <i/d29§2 ~3 /dzx d?a’ Ji(ﬂs)G(az7$’|w)Ji(az/)> ,
g
where G(z,2'|w) is the solution of the equation
z(@i +w(2))G(z, 2/ |w) = 6(z — 2).
Otherwise, the generating functional can be rewritten in the form
1
Z[J] = /Dw exp <ZSeff[(.U] - 5 /dQ,fL' dQ:U, JZ($)G($,x/|w)JZ($/)> ,
N
Seftw] = 15 tr log(@i +w)+ /d2x ;—g
Find the saddle point of this integral as N — co. Suppose the saddle point corresponds to
w(x) = const = wy.

Then
2 ko 2 :
tr log(au + CU()) =V W log(wo —k° - ’LO)

d*k
= iV/ —log(wp + )

g (2m)?
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(7)

where A is an ultraviolet cutoff parameter. Under the logarithm sign, we neglected wp in the expression

wo + A2 in the first term. We find




From this we obtain

wo =m? = A?exp (;i;;) . (8)

We see that in the limit A — oo also ¢ should be tended to zero, in such a way that the value wy = m?

remains finite. For beta-functions at large N we find

dg

_ N
dlog A

2

Blg) = —5-¢% (9)
It is important that, the parameter m of the dimension of mass arises in the theory. We will see now that
this is indeed a mass. In the theory a dynamic mass generation takes place. At no scales the correlation
functions will decrease in a power-law manner, and the presence of a dimensional parameter will be noticeable
in correlation functions at any scales.

Let us now develop the perturbation theory in the parameter 1/N. Represent w(x) in the form

w(a) =m? + (2/N)p(x). (10)

and expand the effective action in powers of N~1/2p(z):

N
Seff[w] = const + 15 trlog (1 + (2/N)1/2p(85 + m2)_1) + p

1
@N)72g "

N
= const + 15 trlog(1+i(2/N)/?pG) + trp

1
(2N)1/2g
1 N2 N & (—i)"(2/N)? n
= const + <(2N)1/zg trp — <2> trpG> - zznz:Qntr(pG) :

Here G is the operator with the kernel G(z, ) = G(z,2'|m?).
The parenthesis in the last expression is equal to zero under the assumption that w = m
Let us check this assumption. We have

2 {8 a minimum.

o= [erto

tr pG = /d2x p(x)G(z,x) = G(0,0) /d2x p(x) = G(0,0)trp
2

&’k i VoA |
:V/(Qﬂ)zk'?—m?HO trp=—log 5 trp=(gN)" trp.

We see that indeed the parenthesis vanishes. By studying the next contribution (n = 2) one can make
sure that the point w = m? is a local minimum. There is no way to prove rigorously that this minimum is
absolute.

Finally we have
N i (=i)™(2/N)"/?

Seff|w] = const — i—
n

[ pe Gl ) )Gl (11)

n=2

The expansion starts from a quadratic term of the form

;/d%l d?xo p(x1)G(x1, 22)p(29) G (29, 21).

Therefore, the propagator D(x1,z2) of the field p(x) is the kernel of the operator inverse to that with the
kernel

D_l(azl, xg) = G(xl, xQ)G(JJQ, ml).

Now it is clear why we needed the factor (2/N)'/2 before p. It allowed us to get rid of the coefficient 2/N
in the propagator D(x1,x2).



Passing to the momentum representation, we obtain

3 k N d*q 1 -
Dlk) = -oemoteees = (/ @) (@ —m2 +i0)((q + R —m2+ iO)) | 2

In addition, the operator G(z, z'|w), which in ([5]), should also be expanded in p(z):

o0

W= i, ;)(_Z) CORCOR

0 n/2
Glorale) = 20" (5) [ G mpn)Glons ). o) Gl 2),
n=0

Represent G(x1,x2) by a solid line:

, P . 105
Gij(p)= i——j =G[p)y= om0 (13)
If we also introduce the vertex
o 1/2
i) (2
. (N) 5, (14)
the following rules of the diagram technique can be formulated:
1. A diagram consists of dashed lines , solid lines and vertices .
2. The outer lines of a diagram can only be solid lines corresponding to the massive particles p; = g~ 1/2n;.

3. Closed loops of solid lines must contain at least three vertices.

We see that in this formulation the diagram technique does not contain the coupling constant g at all.
The order of the diagram in 1/N is equal to %V — L, where V is the number of vertices, and L is the number
of loops of solid lines. From the rule [3]it follows that the order of the diagram is always positive.

The relation between the coupling constant g, the mass m, and the cutoff parameter A can be refined

using the relation
N
1
(3t~
i=1 g

For example, in the order 1/N one can obtain

A7 1 1 A2
2 _ A2 _ _ - . 15
" P ( (N — 2)9’) ’ g g T e log(A2/m?2) (15)

The correction to the inverse coupling constant is the contribution of the specific sigma-model quadratic
divergence. The divergence becomes logarithmic, if we add to the action (2) a term of the form « i A’z w?,
which “blurs” the delta-function in the functional integral.

Let us try now to calculate the S-matrix of the O(/N)-model. Let us examine kinematics first. We have
N particles of mass m. Let two such particles with momenta p; and po be scattered on each other, forming
two new particles of the same mass with momenta p} and p). It is convenient to parameterize the momenta
po by rapidities 0,:

pe = mshé,, pl, =msh@,.

Then
mch@; +mchfy = mcho] +mcho,

msh @1 +mshfy = msh6] + mshb,.

These equations have just two solutions: 0] = 61, 6, = 0 and 6] = 02, 6, = 6;. The scattering matrix of
two particles into two can be presented as

Si7(61,00:01,04) = (27)28(p; — pr1)o(ph — p2)SL7 (01 — b2) + (27)28(phy — p1)O(P) — p2)SLY (61 — B).
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To properly normalize, one has to convert the delta-functions to the standard form of the delta-function
over space-time momenta:

sh(6, — 0,) S'?/<j/(91 — 6s)

‘i/lj/ A 25(2) /
Sy (01,02301,05) = (2m)?02 (P = P)- 3o mS;

4m2 Sh(¢91 — 92)

= (21)26@)(P' - P) S (01— o),

48182

where P* = p/! + pb, P'* = p' + pJ'. Therefore, in the standard notation

L L MU0y — 6y)

S (0 — 0)) = 6t o) =

v ( ! 2) L + 4’m2 Sh(@l — 92)7

where the M;; amplitude is calculated according the Feynman rules.
The compatibility condition with the O(N)-symmetry gives
ngj (9) = 5i’j’6ij51(6) + 62"1'53"]'52(9) + 6j’i5i’js3(9)- (16)

In the order 1/N, the matrix elements are given by the following diagrams:

n P
4m?sh 6 S,(0) = >< ,
b2 p2

Y4 ‘
4m?sh @ (S9(0) — 1) = |

4m?sh @ S3() = |
b2

b1

To calculate these diagrams, we need an explicit formula for D(k). It has the form

4m?2
; 1 1-=5+1
! log H . (17)

= 2
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This cumbersome formula becomes quite elementary in the parameterization

D™ (k)

k* = —4m?sh? g. (18)

Note that the angle 0 in this parameterization coincides with 61 — 05 in the case of the diagram for S3. We
have

h 6
D(k) = 4mim? ST (19)
Substituting these expressions into the diagrams, we obtain
271
0) = —— "~
$10) =~ NGr =0y’
271
Sy(0) =1 — =" 20
2(6) Nsho’ (20)
27
0)=——.
500 =35
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Problems

1. Obtain formulas and .

2. The Gross—Neveu model for the N-component Majorana (i.e. real in the representation with purely
imaginary «y-matrices) Fermi-field is defined by the action

= g, -
Sy] = /dzw (21/%7“3#% + 8(%%‘)2)
(summation is assumed over repeated indices; in a representation with purely imaginary gamma-matrices

we have ¢ = ¢T40).
Show that this model is equivalent to the model with an auxiliary boson field

Sl = [ o (0, —wtopu - 212,

Demonstrate that dynamic mass generation takes place in the model with

2
wop=m = Aexp (—]\;T) .
g

3. Construct a diagrammatic technique for the 1/N-decomposition in the Gross-Neveu model. Find the
S-matrix in the tree approximation.
4. Consider the model with the weakened condition for n?:

Sl = o [ e (@umy? = 2o 17, (21)

where p is the constant with the dimension of mass. Find the mass of excitations in the model in the
leading order. Show that in the limit © — oo the model tends to the sigma-model .
5*. Find the mass of excitation in the model from Problem 5 to Lecture 4 in the leading order in 1/N.



