
Lecture 5
O(N)-model: 1/N-expansion

Consider the general O(N)-model in the Minkowski space:

S[n] =
1

2g

∫
d2x (∂µn)

2, n2 = 1. (1)

It is convenient to introduce an auxiliary field ω(x) and write down the action in the form

S[n, ω] =
1

2g

∫
d2x ((∂µn)

2 − ω(n2 − 1)), (2)

where now the vector n runs through any values in RN . Consider the functional integral

Z[J ] =

∫
DωDn eiS[n,ω]+ig−1/2

∫
d2xJn. (3)

The integral over n is Gaussian. Take it. Notice that

iS[n, ω] + ig−1/2

∫
d2xJn = −1

2

(
ni

g1/2
,K(ω)δij

nj

g1/2

)
+

(
iJi,

ni

g1/2

)
+ i

∫
d2x

ω

2g
,

where
K(ω) = i(∂2µ + ω).

From this we obtain

Z[J ] =

∫
Dω (det(∂2µ + ω))−N/2 exp

(
i

∫
d2x

ω

2g
− 1

2

∫
d2x d2x′ Ji(x)G(x, x

′|ω)Ji(x′)
)
,

where G(x, x′|ω) is the solution of the equation

i(∂2µ + ω(x))G(x, x′|ω) = δ(x− x′). (4)

Otherwise, the generating functional can be rewritten in the form

Z[J ] =

∫
Dω exp

(
iSeff [ω]−

1

2

∫
d2x d2x′ Ji(x)G(x, x

′|ω)Ji(x′)
)
, (5)

Seff [ω] = i
N

2
tr log(∂2µ + ω) +

∫
d2x

ω

2g
. (6)

Find the saddle point of this integral as N → ∞. Suppose the saddle point corresponds to

ω(x) = const = ω0.

Then

tr log(∂2µ + ω0) = V

∫
d2k

(2π)2
log(ω0 − k2 − i0)

= iV

∫
E

d2k

(2π)2
log(ω0 + k2)

=
iV

2π

∫ Λ

0
dk k log(ω0 + k2) =

iV

4π

∫ ω0+Λ2

ω0

du log u =
iV

4π

[
u log

u

e

]ω0+Λ2

ω0

=
iV

4π

(
(ω0 + Λ2) log

ω0 + Λ2

e
− ω0 log

ω0

e

)
=
iV

4π

(
ω0 log

Λ2

ω0
+ Λ2 log

ω0 + Λ2

e

)
. (7)

where Λ is an ultraviolet cutoff parameter. Under the logarithm sign, we neglected ω0 in the expression
ω0 + Λ2 in the first term. We find

0 =
dS[ω0]

dω0
= V

(
−N

8π
log

Λ2

ω0
+

1

2g

)
.

1



From this we obtain

ω0 = m2 = Λ2 exp

(
− 4π

Ng

)
. (8)

We see that in the limit Λ → ∞ also g should be tended to zero, in such a way that the value ω0 = m2

remains finite. For beta-functions at large N we find

dg

d log Λ
= β(g) = −N

2π
g2. (9)

It is important that, the parameter m of the dimension of mass arises in the theory. We will see now that
this is indeed a mass. In the theory a dynamic mass generation takes place. At no scales the correlation
functions will decrease in a power-law manner, and the presence of a dimensional parameter will be noticeable
in correlation functions at any scales.

Let us now develop the perturbation theory in the parameter 1/N . Represent ω(x) in the form

ω(x) = m2 + (2/N)1/2ρ(x). (10)

and expand the effective action in powers of N−1/2ρ(x):

Seff [ω] = const + i
N

2
tr log

(
1 + (2/N)1/2ρ(∂2µ +m2)−1

)
+

1

(2N)1/2g
tr ρ

= const + i
N

2
tr log(1 + i(2/N)1/2ρG) +

1

(2N)1/2g
tr ρ

= const +

(
1

(2N)1/2g
tr ρ−

(
N

2

)1/2

tr ρG

)
− i

N

2

∞∑
n=2

(−i)n(2/N)n/2

n
tr(ρG)n.

Here G is the operator with the kernel G(x, x′) = G(x, x′|m2).
The parenthesis in the last expression is equal to zero under the assumption that ω = m2 is a minimum.

Let us check this assumption. We have

tr ρ =

∫
d2x ρ(x),

tr ρG =

∫
d2x ρ(x)G(x, x) = G(0, 0)

∫
d2x ρ(x) = G(0, 0) tr ρ

= V

∫
d2k

(2π)2
i

k2 −m2 + i0
tr ρ =

V

4π
log

Λ2

m2
tr ρ = (gN)−1 tr ρ.

We see that indeed the parenthesis vanishes. By studying the next contribution (n = 2) one can make
sure that the point ω = m2 is a local minimum. There is no way to prove rigorously that this minimum is
absolute.

Finally we have

Seff [ω] = const − i
N

2

∞∑
n=2

(−i)n(2/N)n/2

n

∫
d2nx ρ(x1)G(x1, x2) . . . ρ(xn)G(xn, x1). (11)

The expansion starts from a quadratic term of the form

i

2

∫
d2x1 d

2x2 ρ(x1)G(x1, x2)ρ(x2)G(x2, x1).

Therefore, the propagator D(x1, x2) of the field ρ(x) is the kernel of the operator inverse to that with the
kernel

D−1(x1, x2) = G(x1, x2)G(x2, x1).

Now it is clear why we needed the factor (2/N)1/2 before ρ. It allowed us to get rid of the coefficient 2/N
in the propagator D(x1, x2).
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Passing to the momentum representation, we obtain

D(k) =
k

= −
(∫

d2q

(2π)2
1

(q2 −m2 + i0)((q + k)2 −m2 + i0)

)−1

. (12)

In addition, the operator G(x, x′|ω), which in (5), should also be expanded in ρ(x):

G[ω] =
1

G−1 + i(2/N)1/2ρ
=

∞∑
n=0

(−i)n
(
2
N

)n/2
G(ρG)n,

G(x1, x2|ω) =
∞∑
n=0

(−i)n
(

2

N

)n/2 ∫
d2ny G(x1, y1)ρ(y1)G(y1, y2) . . . ρ(yn)G(yn, x2).

Represent G(x1, x2) by a solid line:

Gij(p) = i
p

j = G(p)δij =
iδij

p2 −m2 + i0
. (13)

If we also introduce the vertex

i j
= −i

(
2

N

)1/2

δij , (14)

the following rules of the diagram technique can be formulated:

1. A diagram consists of dashed lines (12), solid lines (13) and vertices (14).

2. The outer lines of a diagram can only be solid lines corresponding to the massive particles φi = g−1/2ni.

3. Closed loops of solid lines must contain at least three vertices.

We see that in this formulation the diagram technique does not contain the coupling constant g at all.
The order of the diagram in 1/N is equal to 1

2V −L, where V is the number of vertices, and L is the number
of loops of solid lines. From the rule 3 it follows that the order of the diagram is always positive.

The relation between the coupling constant g, the mass m, and the cutoff parameter Λ can be refined
using the relation 〈

N∑
i=1

φ2
i (x)

〉
=

1

g
.

For example, in the order 1/N one can obtain

m2 = Λ2 exp

(
− 4π

(N − 2)g′

)
,

1

g′
=

1

g
+

Λ2

4πm2 log(Λ2/m2)
. (15)

The correction to the inverse coupling constant is the contribution of the specific sigma-model quadratic
divergence. The divergence becomes logarithmic, if we add to the action (2) a term of the form α

∫
d2xω2,

which “blurs” the delta-function in the functional integral.
Let us try now to calculate the S-matrix of the O(N)-model. Let us examine kinematics first. We have

N particles of mass m. Let two such particles with momenta p1 and p2 be scattered on each other, forming
two new particles of the same mass with momenta p′1 and p′2. It is convenient to parameterize the momenta
pa by rapidities θa:

pa = m sh θa, p′a = m sh θ′a.

Then
m ch θ1 +m ch θ2 = m ch θ′1 +m ch θ′2,

m sh θ1 +m sh θ2 = m sh θ′1 +m sh θ′2.

These equations have just two solutions: θ′1 = θ1, θ
′
2 = θ2 and θ′1 = θ2, θ

′
2 = θ1. The scattering matrix of

two particles into two can be presented as

Si′j′

ij (θ1, θ2; θ
′
1, θ

′
2) = (2π)2δ(p′1 − p1)δ(p

′
2 − p2)S

i′j′

ij (θ1 − θ2) + (2π)2δ(p′2 − p1)δ(p
′
1 − p2)S

j′i′

ij (θ1 − θ2).
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To properly normalize, one has to convert the delta-functions to the standard form of the delta-function
over space-time momenta:

Si′j′

ij (θ1, θ2; θ
′
1, θ

′
2) = (2π)2δ(2)(P ′ − P )

sh(θ1 − θ2)

ch θ1 ch θ2
Si′j′

ij (θ1 − θ2)

= (2π)2δ(2)(P ′ − P )
4m2 sh(θ1 − θ2)

4ε1ε2
Si′j′

ij (θ1 − θ2),

where Pµ = pµ1 + pµ2 , P
′µ = p′µ1 + p′µ2 . Therefore, in the standard notation

Si′j′

ij (θ1 − θ2) = δi
′
i δ

j′

j +
M i′j′

ij (θ1 − θ2)

4m2 sh(θ1 − θ2)
,

where the Mij amplitude is calculated according the Feynman rules.
The compatibility condition with the O(N)-symmetry gives

Si′j′

ij (θ) = δi′j′δijS1(θ) + δi′iδj′jS2(θ) + δj′iδi′jS3(θ). (16)

In the order 1/N , the matrix elements are given by the following diagrams:

4m2 sh θ S1(θ) =

p1

p2

p1

p2

,

4m2 sh θ (S2(θ)− 1) =

p1 p1

p2 p2

,

4m2 sh θ S3(θ) =

p1 p2

p2 p1

.

To calculate these diagrams, we need an explicit formula for D(k). It has the form

D−1(k) =
i

2πk2
1√

1− 4m2

k2

log

√
1− 4m2

k2
+ 1√

1− 4m2

k2
− 1

. (17)

This cumbersome formula becomes quite elementary in the parameterization

k2 = −4m2 sh2
θ

2
. (18)

Note that the angle θ in this parameterization coincides with θ1 − θ2 in the case of the diagram for S3. We
have

D(k) = 4πim2 sh θ

θ
. (19)

Substituting these expressions into the diagrams, we obtain

S1(θ) = − 2πi

N(iπ − θ)
,

S2(θ) = 1− 2πi

N sh θ
,

S3(θ) = −2πi

Nθ
.

(20)
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Problems

1. Obtain formulas (17) and (19).
2. The Gross–Neveu model for the N -component Majorana (i.e. real in the representation with purely

imaginary γ-matrices) Fermi-field is defined by the action

S[ψ] =

∫
d2x

(
i

2
ψ̄iγ

µ∂µψi +
g

8
(ψ̄iψi)

2

)
(summation is assumed over repeated indices; in a representation with purely imaginary gamma-matrices
we have ψ̄ = ψTγ0).

Show that this model is equivalent to the model with an auxiliary boson field

S[ψ, ω] =

∫
d2x

(
1

2
ψ̄i(iγ

µ∂µ − ω(x))ψi −
ω2(x)

2g

)
.

Demonstrate that dynamic mass generation takes place in the model with

ω0 = m = Λexp

(
− 2π

Ng

)
.

3. Construct a diagrammatic technique for the 1/N -decomposition in the Gross-Neveu model. Find the
S-matrix in the tree approximation.

4. Consider the model with the weakened condition for n2:

S[n] =
1

2g

∫
d2x

(
(∂µn)

2 − 2µ2

g
(n2 − 1)2

)
, (21)

where µ is the constant with the dimension of mass. Find the mass of excitations in the model (21) in the
leading order. Show that in the limit µ→ ∞ the model tends to the sigma-model (1).

5∗. Find the mass of excitation in the model from Problem 5 to Lecture 4 in the leading order in 1/N .
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