
Lecture 4
O(3)-model: mass generation by instantons

Consider the O(3)-model:

S[n] =
1

2g

∫
d2x (∂µn)

2, n2
1 + n2

2 + n2
3 = 1. (1)

We will be interested in the functions n(x) with finite action. These function correspond to processes of
finite amplitude e−S[n]. It follows from the finiteness of the action that the solution should tend to a constant
at infinity:

n(x) →
x→∞

n0. (2)

Thus, the infinity can be considered as a point on the two-dimensional sphere S2. The continuous function
n(x), which satisfies the condition (2), defines a continuous mapping

n : S2 → S2. (3)

Such mappings are classified by the topological number q, such that n realizes a |q|-sheeted covering of a
sphere by a sphere. If q > 0, the mapping preserves orientation, while if q < 0, reverses it. A representative
of the class q is, for example, a mapping:

θ′ = θ, φ′ = qφ, (4)

where (θ, φ) are the polar coordinates on a sphere.
Let us express the topological number in terms of the field n. We will consider it as a mapping of the

sphere S2 onto the sphere S2′. On the sphere S2 we set the coordinates x = (x1, x2), while on the sphere
S2′ the coordinates x′ = (x′1, x′2) and the metric g′µν . The metric on the sphere S2 is not essential. Let

S =

∫
S2′

d2x′
√
g′

is the area of the sphere S2′. Then the topological number can be expressed in terms of the area covered by
the map x′(x) when x covers the whole sphere S2:

q =
1

S

∫
x′(S2)

d2x′
√
g′ =

1

S

∫
S2

d2x
∂(x′)

∂(x)

√
g′.

In spherical coordinates

q =
1

4π

∫ 2π

0
dφ

∫ π

0
dθ

∂(θ′, φ′)

∂(θ, φ)
sin θ′ =

1

4π

∫
d2x

∂(θ′, φ′)

∂(x1, x2)
sin θ′.

To find the Jacobian ∂(θ′, φ′)/∂(x1, x2) = (∂θ′/∂x1)(∂φ′/∂x2) − (∂θ′/∂x2)(∂φ′/∂x1), rewrite the spherical
variables in terms n and x. Put

n = (sin θ′ cosφ′, sin θ′ sinφ′, cos θ′). (5)

It can be checked by a direct calculation that

1

2
n (∂µn× ∂νn)ϵ

µν =
∂(θ′, φ′)

∂(x1, x2)
sin θ′. (6)

From this we obtain

q =
1

8π

∫
d2xn (∂µn× ∂νn)ϵ

µν . (7)

It is possible to derive (7) even easier. The vector ∂1n dx1 is a small displacement vector on a sphere
that corresponds to the displacement by (dx1, 0) in the x-space. Similarly, ∂2n dx2 is a displacement vector
on a sphere that corresponds to the displacement by (0, dx2).Both vectors are perpendicular to the vector n.
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Then |∂1n × ∂2n dx1 dx2| = ±n (∂1n × ∂2n) d
2x is the area of a small parallelogram on the sphere. The

“+” sign corresponds to the orientation preserving map, and the “−” sign corresponds to the orientation
reversing map. Therefore, ∫

d2xn (∂1n× ∂2n) =
1

2

∫
d2xn (∂µn× ∂νn)ϵ

µν

is equal to the area on the sphere, covered during the integration over the entire x-space, which is equal
to 4πq.

From the identity∫
d2x (∂µn+ ϵµνn× ∂νn)2 = 2

∫
d2x (∂µn)

2 − 2

∫
d2xn (∂µn× ∂νn)ϵ

µν (8)

we obtain

S[n] =
4πq

g
+

1

4g

∫
d2x (∂µn+ ϵµνn× ∂νn)2. (9)

By the substitution n → −n, q → −q we have

S[n] = −4πq

g
+

1

4g

∫
d2x (∂µn− ϵµνn× ∂νn)2. (10)

It obviously follows from this that

S[n] ≥ 4π|q|
g

. (11)

Inequality (11) turns into an equality on solutions of the first-order equations (the self-duality equations)

∂µn = −ϵµνn× ∂νn (q ≥ 0), (12)

∂µn = ϵµνn× ∂νn (q ≤ 0). (13)

The solutions of these equations minimize the action and, therefore, constitute a subclass of the solutions to
the equations of motion. To solve the self-duality equations explicitly, we use the stereographic projection
onto the plane. It is convenient to use the complex coordinate w on this plane:

n1 + in2 =
2w

1 + |w|2
, n3 =

1− |w|2

1 + |w|2
. (14)

Substituting (14) into (12), (13), we obtain

∂̄w = 0 (q ≥ 0), (15)

∂w = 0 (q ≤ 0). (16)

Consider the case q > 0. The function w(z) must be a meromorphic function on the sphere, that is, the only
singularities of this function, including a singularity at infinity, are poles. The number of nodes and poles of
such a function should be finite. The point n = (0, 0, 1) corresponds to nodes, while the point n = (0, 0,−1)
to poles. The most general such solution (15) has the form

w(q, a⃗, b⃗, c; z) = c

q∏
j=1

z − aj
z − bj

, (17)

where c ∈ C \ {0}, aj , bj ∈ C ∪ {∞}, ai ̸= bj (∀i, j). Besides, the limiting cases ai → ∞, cai = const and
bi → ∞, c/bi = const should be taken into account, but these cases have zero measure. It is easy to find a
topological number corresponding to the solution (17). Let w0 ∈ C ∪ {∞}. Then the number of solutions
to the equation w(z) = w0 accounting for multiplicities is independent of w0. Let w0 be equal, for example,
to infinity. Then it is obvious that the number of solutions to this equation is equal to q. This means that
w(z) provides a q-sheeted covering and the topological number is q.
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Similarly, in the case of a topological number q < 0 we obtain

w(q, a⃗, b⃗, c; z̄) = c

−q∏
j=1

z̄ − aj
z̄ − bj

, (18)

The solutions (17) and (18) are called (multi)instanton solutions.
Let us try to use instanton solutions to approximately calculate the functional integral for the quantum

O(3)-model. We will integrate over multi-instanton solutions and small fluctuations near them.
Rewrite (9) and (10) in terms of the field w(z, z̄):

S[w, w̄] =
4πq

g
+

8

g

∫
d2x

∂̄w∂w̄

(1 + |w|2)2
(19)

= −4πq

g
+

8

g

∫
d2x

∂w∂̄w̄

(1 + |w|2)2
. (20)

Consider the case of q ≥ 0. Let

Sq[φ, φ̄] = S[w(q, a⃗, b⃗, c; z)(1 + g1/2φ(z, z̄)), w∗(q, a⃗, b⃗, c; z)(1 + g1/2φ̄(z, z̄))]. (21)

It is easy to see that

Sq[φ, φ̄] =
4πq

g
+ 8

∫
d2x

|w|2

(1 + |w|2)2
∂̄φ∂φ̄ (22)

in the quadratic approximation. Accordingly, the q-instanton contribution to the partition function has the
form

Zq =
e−4πq/g

(q!)2

∫
dµ(⃗a, b⃗, c)Z[w(q, a⃗, b⃗, c; z)], Z[w] =

∫
DφDφ̄ exp

(
−8

∫
d2x

|w|2

(1 + |w|2)2
∂̄φ∂φ̄

)
.

(23)
Here dµ(⃗a, b⃗, c) is the integration measure over a⃗, b⃗ and c, which is invariant under translations, extensions
and inversions. This measure is easy to find:

dµ(⃗a, b⃗, c) = kq
d2c

|c|2
q∏

j=1

d2aj d
2bj

∏
i<j

|ai − aj |4|bi − bj |4
∏
i,j

|ai − bj |−4 (24)

with a certain constant k.
Evidently the integral Z[w] is independent of the coupling constant g. Due to the contribution of

ultraviolet and infrared cutoffs, this integral will not be literally invariant with respect to the conformal
transformations of the parameters aj , bj . It will be transformed by the rule:

Z[w] → Z[w′]

q∏
j=1

∣∣∣∣da′jdaj

∣∣∣∣2α ∣∣∣∣db′jdbj

∣∣∣∣2α
with a certain α. It follows that

Z[w] ∼ f(c)
∏
i<j

|ai − aj |−4α|bi − bj |−4α
∏
i,j

|ai − bj |4α.

Certain rather complex calculations can show that α = 1/2 and f(c) = |c|2/(1 + |c|2)2, so the integral over
c gives just a finite factor. If you accept this, you obtain [1]

Zq ∼
λq

(q!)2

∫ q∏
j=1

d2aj d
2bj

∏
i<j

|ai − aj |2|bi − bj |2
∏
i,j

|ai − bj |−2, (25)

where λ ∼ e−4π/g.
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It is easy to verify that this is a plasma described by the sine-Gordon model with β2 = 1 or the Thirring
model with g = 0, that is, a free massive fermion. This means that the instantons in the model generate a
mass. Detailed calculations were performed in [2].

The fault of the above reasoning is that we only took into account the instanton solutions. We can, of
course, take into account the anti-instanton solutions. However, a realistic description of the model can only
be when using fluctuations near functions containing both instantons and anti-instantons. Unfortunately,
such a description is not yet available.

There is one important consequence of the existence of a topological number (7). Indeed, the action of
the O(3)-models can be modified:

Sθ(n) = S(n) + iθq =
1

2g

∫
d2x (∂µn)

2 + i
θ

8π

∫
d2xn(∂µn× ∂νn)ϵ

µν . (26)

The last term is called the θ-term. The physical properties of the model substantially depend on θ, since
the partition function (and the generating functional) are written as

Z =

∞∑
q=−∞

eiθqZq.

In particular, it is known that for θ = π the O(3)-model is massless, but not scale-invariant.
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Problems

1. By using the substitution (5) obtain (6).
2. Derive the identity (8).
3. Prove the equivalence of the equations (15), (16) to the equations (12), (13).
4. Express the topological charge q in terms of the function w(z, z̄) in the form of two-dimensional

integral.
5∗. Let n(x) = (n1(x), . . . , nN (x)) be complex scalar fields on the plain restricted by the condition

|n(x)|2 ≡
N∑
i=1

|ni(x)|2 = 1,

and Aµ(x) is a real (co)vector field. Consider the action

S[n, A] =
1

2g

∫
d2xDµn ·Dµn, Dµ = ∂µ +Aµ.

Show that the quantity

q =
1

2π

∫
d2x ϵµν ∂µAν

is an integer topological charge, and in each topological sector we have

S ≥ π

g
|q|.

Find the self-duality equations.
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