
Lecture 2
Bosonization of the Thirring model

Consider the massive Thirring model in the Minkowski space:

SMT [ψ, ψ̄] =

∫
d2x

(
ψ̄(i∂̂ −m)ψ − g

2
(ψ̄γµψ)2

)
. (1)

Here ψ(x), ψ̄(x) are the fermion field and its Dirac conjugate, γµ are the Dirac matrices, and ∂̂ = γµ∂µ.
The Dirac matrices satisfy the standard relations

γµγν + γνγµ = 2gµν , γµ+ = γ0γµγ0.

In the two-dimensional case the gamma-matrices can be written as:

γ0 =

(
−i

i

)
, γ1 =

(
i

i

)
, γ3 = γ0γ1 =

(
1

−1

)
. (2)

The model has a conserved current
jµ = ψ̄γµψ. (3)

When m = 0 there is another conserved current

jµ3 = ψ̄γ3γµψ = −ϵµνjν . (4)

In the previous lecture we considered the sine-Gordon model:

SSG[ϕ] =

∫
d2x

(
(∂µϕ)

2

8π
+ µ cosβϕ

)
. (5)

This model has a topological number

q =
β

2π
(ϕ(t,+∞)− ϕ(t,−∞)), (6)

which takes integer values. It can be written as

q =
β

2π

∫ ∞

−∞
dx ∂1ϕ(t, x). (7)

This allows us to define a current responsible for the topological charge:

jµtop = − β

2π
ϵµν∂νϕ. (8)

This current satisfies the continuity equation ∂µj
µ
top = 0 due to the antisymmetry of the symbol ϵµν and the

commutativity of derivatives.
In the present lecture we will make sure that the massive Thirring model and the sine-Gordon model

are equivalent[2, 3], while the parameters of the two models are related according to

g = π(β−2 − 1), (9)

µ ∼ mrβ
2−1

0 , (10)

and the Thirring current coincides with the topological one:

jµ = jµtop. (11)

This is an extremely important correspondence called bosonization. The equation (11) plays a key role in
the bosonization.
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Rewrite the action of the Thirring model by using the explicit form of the gamma-matrices:

SMT [ψ, ψ̄] =

∫
d2x (iψ+

1 (∂0 + ∂1)ψ1 + iψ+
2 (∂0 − ∂1)ψ2 + im(ψ+

1 ψ2 − ψ+
2 ψ1)− 2gψ+

1 ψ
+
2 ψ2ψ1).

Substituting z = x1 − x0, z̄ = x1 + x0, we obtain

SMT [ψ, ψ̄] =

∫
d2x (2iψ+

1 ∂̄ψ1 − 2iψ+
2 ∂ψ2 + im(ψ+

1 ψ2 − ψ+
2 ψ1)− 2gψ+

1 ψ
+
2 ψ2ψ1).

In these components the Thirring current has the form:

jz = −ψ+
1 ψ1, jz̄ = ψ+

2 ψ2. (12)

Consider the case m = 0, which admits an exact solution [1]. Start with solving classical equations of motion

∂̄ψ1 = −igψ+
2 ψ2ψ1 ≡ −igjz̄ψ1,

∂ψ2 = igψ+
1 ψ1ψ2 ≡ −igjzψ2.

(13)

Since ϵµν∂µjν = ∂µj
µ
3 = 0 the current jµ is a gradient of a free field:

jµ = − β

2π
∂µϕ̃. (14)

It is convenient to consider the field ϕ̃ as a dual to another field ϕ, as it was described in the last lecture.
Both satisfy the d’Alembert equation:

∂µ∂
µϕ = ∂µ∂

µϕ̃ = 0.

The general solution to these equations can be written as

ϕ(x) = φ(z) + φ̄(z̄),

ϕ̃(x) = φ(z)− φ̄(z̄),
(15)

where φ(z) and φ̄(z̄) are arbitrary functions of the only z and z̄ variables respectively. The coefficient in
(14) is arbitrary. We choose it in such a way that the relation (11) is formally satisfied, if we identify the
field ϕ with that in the sine-Gordon model.

We see that the massless Thirring model is equivalent to the free massless boson model. From relation
(14) we have

β

2π
∂φ = ψ+

1 ψ1,
β

2π
∂̄φ̄ = ψ+

2 ψ2. (16)

To continue searching for a classical solution, we have to substitute these functions into the equations (13).
By solving the last one we obtain

ψ1(z, z̄) = F1(z)e
−i gβ

2π
φ̄(z̄), ψ2(z, z̄) = F2(z̄)e

i gβ
2π

φ(z) (17)

with arbitrary functions Fi. By substituting them back into (16), we have

β

2π
∂φ(z) = F1(z)F

∗
1 (z),

β

2π
∂̄φ̄(z̄) = F2(z̄)F

∗
2 (z̄), (18)

where the star denotes complex conjugation under the assumption of real arguments. It is left to integrate
these equations and substitute the result into (17). As a result the fields ψi are expressed in terms of two
functions Fi and two integration constants.

Let us turn to the quantum case. The situation is simpler just in the quantum case. Let us look for a
solution to the equations (16) in the form

ψi(x) = ηi

√
Ni

2π
eiαiφ(z)+iβiφ̄(z̄), ψ+

i (x) = η−1
i

√
Ni

2π
e−iαiφ(z)−iβiφ̄(z̄), (19)
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where ηi are the algebraic factors necessary to ensure the fermionic behavior of the fields ψi. It turns out
that solutions can be found, if we assume

η1η2 = −η2η1. (20)

First of all, demand that the fields ψi(x) behave like fermions. Consider the product

ψi(x
′)ψj(x) = ηiηj

√
NiNj

2π
(z′ − z)αiαj (z̄′ − z̄)βiβjeiαiφ(z

′)+iβiφ̄(z̄
′)+iαjφ(z)+iβj φ̄(z̄). (21)

This expression continues well into the Euclidean region. From the anticommutativity requirement it is easy
to obtain that

α2
i − β2i ∈ 2Z+ 1, α1α2 − β1β2 ∈ 2Z. (22)

From (21) it can be seen that products like ψ+
1 ψ1 are poorly defined. Let us define these products as follows.

Consider another product:

ψ+
1 (x

′)ψ1(x) =
N1

2π
(z′ − z)−α2

1
(
z̄′ − z̄

)−β2
1
(
1− iα1(z

′ − z) ∂ϕ(x)− iβ1(z̄
′ − z̄) ∂̄ϕ(x) + · · ·

)
. (23)

Take an average of this product over the circle |z′ − z|2 = r20 and assume that r0 is small. The leading term
in the expansion in r0 will be assumed for ψ+

1 (x)ψ1(x). Suppose that

α2
1 − β21 = 1. (24)

Then the first and third terms in the expansion (23) vanish after averaging. The leading nonzero term is
the second:

N1r
−2β2

1
0

(
−iα1∂φ

2π

)
.

It is just what we will identify with ψ+
1 ψ1. The coefficient N1 must be imaginary for consistency with the

Hermicity of ψ+ψ. Comparing with (16), we obtain

β = −ir−2β2
1

0 N1α1. (25)

Similarly, assuming
α2
2 − β22 = −1, (26)

we obtain
β = −ir−2α2

2
0 N2β2. (27)

Now consider the equations of motion (13). Substituting (16) and (19), we obtain

iβ1 ∂̄φ̄ e
iα1φ+iβ1φ̄ = −ig β

2π
∂̄φ̄ eiα1φ+iβ1φ̄,

iα2 ∂φ e
iα2φ+iβ2φ̄ = ig

β

2π
∂φ eiα2φ+iβ2φ̄.

From this we have

α2 = −β1 =
gβ

2π
, (28)

which is surely consistent with the classical solution.
To fix the coefficients αi, βi, we need to define the mass term consistently in such a way that it commute

with the fermion charge

Q =

∫
dfµ j

µ, (29)

where dfµ = ϵµν dx
ν is the one-dimensional surface element. Consider the expansion

ψ+
2 (x

′)ψ1(x) = −η1η−1
2

√
N1N2

2π
(z′ − z)−α1α2(z̄′ − z̄)−β1β2

(
ei(α1−α2)φ(z)+i(β1−β2)φ̄(z̄) + · · ·

)
.
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The first term survives under averaging over the corners if

α1α2 = β1β2, (30)

which is consistent with (24–28) and yields
α1 = −β2. (31)

By taking the angular average we obtain the definition of the products

ψ+
2 ψ1 = −η1η−1

2

√
N1N2

2π
r−2α1α2
0 ei(α1−α2)ϕ,

ψ+
1 ψ1 = −η2η−1

1

√
N1N2

2π
r−2α1α2
0 e−i(α1−α2)ϕ.

(32)

Check now that the operators defined in such a way commute with Q. Let O(x) be a local operator.
Calculate the commutator

[O(0), Q] =

∮
dfµ j

µ(x)O(0) =

∮
dxν ϵµνj

µ(x)O(0) = − β

2π

∮
dxν ϵµν ∂

µϕ̃(x)O(0)

= − β

2π

∮
dxν ϵµνϵ

µλ ∂λϕ(x)O(0) =
β

2π

∮
dxλ ∂λϕ(x)O(0) =

β

2π
∆ϕ(x)O(0), (33)

Here ∆ϕ(x) is the increment of the field ϕ(x) while x goes around zero counterclockwise. Let us apply this
formula to the operator O(x) = eiαφ(z)+iα′φ̄(z̄):

[eiαφ(0)+iα′φ̄(0), Q] =
β

2π
∆(φ(z) + φ̄(z̄))eiαφ(0)+iα′φ̄(0)

=
iβ

2π
∆

(
α log

1

z
+ α′ log

1

z̄

)
eiαφ(0)+iα′φ̄(0) = β(α− α′)eiαφ(0)+iα′φ̄(0). (34)

The commutator [Q,O(x)] = 0, if α = α′ a, therefore, O(x) = eiαϕ(x). Evidently, this condition is satisfied
for the operators defined in (32).

Now fix the β parameter. To do it we set O(x) = ψi(x) in (34). Since the operators ψi have the fermion
charge equal to −1, we have

ψi(0) = [ψi(0), Q] = β(αi − βi)ψi(0) = β(α1 + α2)ψi(0)

Hence,
α1 + α2 = β−1, (35)

and we immediately obtain
α1 − α2 = β (36)

and

α1 = −β2 =
1

2

(
1

β
+ β

)
,

α2 = −β1 =
1

2

(
1

β
− β

)
.

(37)

Substituting the answer into (28), we get (9).
From (25), (27) we find

N1 = −N2 = ir
β2

2
+ 1

2β2
−1

0

2β2

β2 + 1
, (38)

From this we obtain

− iψ+
2 ψ1 =

1

π

β2

β2 + 1
rβ

2−1
0

(
iη1η

−1
2

)
eiβϕ,

iψ+
1 ψ2 =

1

π

β2

β2 + 1
rβ

2−1
0

(
iη1η

−1
2

)−1
e−iβϕ.
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Since on the infinite plane the total “charge” must be equal to zero, the operators eiβϕ and e−iβϕ must occur

in equal numbers for correlation functions polynomial in φ, φ̄. Therefore, the factors
(
iη1η

−1
2

)±1
will also

cancel each other. In a more general case, they can be omitted by redefining the operators:(
iη1η

−1
2

)α/β
eiαϕ → eiαϕ.

Then we have

i(ψ+
1 ψ2 − ψ+

2 ψ1) =
2

π

β2

β2 + 1
rβ

2−1
0 cosβϕ, (39)

from which we find (10).
Rigorously speaking, so far we have found the exact solution for the massless Thirring model only.

However, it follows from our reasoning that the perturbation theory in the term mψ̄ψ for the Thirring
model and the perturbation theory in cosβϕ for the sine-Gordon model coincide, which gives a strong
foundation in favor of the coincidence of the theories[2, 3]. Note that the coupling constant g in the Thirring
model does not renormalize, while the “mass” m is not a physical quantity and substantially renormalizes.
This is because the mass term ψ+

1 ψ2 − ψ+
2 ψ1 has a scale dimension β2 due to redefinition of the product of

fields. The constant µ in the sine-Gordon model is measurable, and

µ ∼ m2−β2

phys , m ∼ mphys(mphysr0)
1−β2

= mphys(mphysr0)
g/π

1+g/π , (40)

where mphys is the mass of physical excitations (for example, the Thirring fermions) in theory. The propor-

tionality coefficient between the parameter µ and m2−β2

phys is known exactly [4].
One more question remains: what does the Thirring fermions in the sine-Gordon model correspond to?

From the equality between the topological and fermion currents, we can conclude that they correspond to
kinks, which are nontrivial excitations with topological numbers q = ±1. Simultaneously the kink excitation
can be generated not only by fermion operators, but also by boson operators. Consider the operators

eiJφ = e
iJ
2β

ϕ̃
, J ∈ Z, (41)

which entered the correlation functions of the last lecture. These operator acting on a state change the
topological number: q → q+J . For J = ±1 they can be considered as boson creation-annihilation operators
of the kinks.
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Problems

1. Prove that the current (4) is conserved in the massless Thirring model. Find the divergence of the
current for nonzero mass.

2. In the model of free massless Dirac fermions (m = 0, g = 0) find the pair correlation functions of the
fermion fields ⟨ψ+

i (x
′)ψj(x)⟩.

3. Obtain all classical solutions ϕ(t, x) of the sine-Gordon equation with finite energy that only depend
on the combination x− vt with some constant v, |v| < 1. Find topological charges of these solutions.

4. Repeat the reasoning of the lecture in the special case of a free fermion (g = 0). Check that in
this case mphys = m = πµ. Show that the bosonization reproduces the correct commutation relations for
massless fermions.
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5∗. Show that in the Thirring model, in consistency with (40), in the one-loop approximation, the mass
renormalizes as follows

mphys = m

(
1 +

g

π
log

Λ

m

)
,

where Λ is the momentum cutoff parameter.
While deriving the diagrammatic technique, it is convenient to use the representation for the action of

the Thirring model with an auxiliary field:

S[ψ, ψ̄, Aµ] =

∫
dDx

(
ψ̄(i∂̂ − Â−m)ψ +

1

2g
AµAµ

)
.

6


