
Lecture 1
O(2)-model and Berezinskii–Kosterlitz–Thouless transition

In these lectures we will often consider the models in two-dimensional space-time with the action

S[n] =
1

2g

∫
d2x (∂µn)

2, n2 ≡
N∑
i=1

n2
i = 1, (1)

which are called n-field models or O(N)-models. These models have an explicit O(N) symmetry, which is
the symmetry of rotations of a sphere. They belong to a wide class of sigma-models, that is, models in
which the fields lie on manifolds.

Now we will consider the simplest model in this series, the O(2)-model. It elementarily linearizes. Let

n1 = cosφ, n2 = sinφ.

Then

S[φ] =
1

2g

∫
d2x (∂µφ)

2, (2)

φ(x) ∼ φ(x) + 2π. (3)

The last line means that we consider the values φ and φ+ 2π of the field equivalent.
One would think that we have a massless field with correlation functions of for operators consistent with

(3) decaying power-like:

⟨eimφ(x′)einφ(x)⟩ ∼
(
−(x′ − x)2

) g
4π

mn
, m, n ∈ Z. (4)

In fact, this is not at all the case, and the result substantially depends on the value of the constant g. To
make sure of it let us consider the classical solution of the field equations

∇2φ = 0 (5)

in the Euclidean space. It admits solutions of the form

φq⃗x⃗(x) =

n∑
a=1

qa Im log(z − za) =

n∑
a=1

qa
2i

log
z − za
z̄ − z̄a

, qa ∈ Z, (6)

where
z = x1 + ix2 = x1 − x0,

z̄ = x1 − ix2 = x1 + x0.

Though these solutions have singularities (indefinite values) at the points z = za, they are very important.
They are solutions with n vortices at the points za with vorticities qa. In the simplest case n = 1 in the
radial coordinates z − z1 = reiθ the solution has the form

φq1x1(x) = q1θ.

It is important to note that solutions (6) satisfy the equation (5) even at the points x = xa. Indeed,

∂µ∂
µ 1

2i
log

z

z̄
= ∂µ∂

µ arctg
x2

x1
= −ϵµν∂µ

xν

r2
= ϵµν∂µ∂ν log

1

r
.

Then for any smooth, bounded and decreasing fast enough function φ(x) we have∫
d2xφ(x)∂µ∂

µ 1

2i
log

z

z̄
=

∫
d2x (ϵµν∂µ∂νφ(x)) log

1

r
= 0,

since the integral of log r converges at x = 0. Hence we immediately obtain∫
d2x ∂µφ∂µφq⃗x⃗ = 0. (7)
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Let us calculate the value of the action on the vortex solutions (6):

S[φq⃗x⃗] =
2

g

∫
d2x ∂φq⃗x⃗ ∂̄φq⃗x⃗ =

1

2g

∫
d2x

∑
a,b

qaqb
(z − za)(z̄ − z̄b)

=
1

2g

(∑
a

q2a

∫
d2x

|z − za|2
+
∑
a<b

qaqb

∫
d2x

(z − za)(z̄ − z̄b) + (z̄ − z̄a)(z − zb)

|z − za|2|z − zb|2

)
.

The first integral is taken easily, but diverges on both large and small scales:∫
d2x

|z − za|2
≃ 2π

∫ R

r0

dr

r
= 2π log

R

r0
,

where R and r0 are infrared and ultraviolet cutoff parameters respectively. The second integral only diverges
on large scales. We have∫

d2x
(z − za)(z̄ − z̄b) + (z̄ − z̄a)(z − zb)

|z − za|2|z − zb|2
= 2π log

R2

|za − zb|2
.

Substituting these formulas into the integral for the action, we obtain

S[φq⃗x⃗] =
1

2g

(
π
∑
a

q2a log
R2

r20
+ 2π

∑
a<b

qaqb log
R2

|za − zb|2

)
(8)

=
π

2g

(∑
a

qa

)2

logR2 − π

2g

∑
a

q2a log r
2
0 +

1

2g

∑
a<b

qaqb 2π log
1

|za − zb|2
. (9)

The first term tends to infinity when the size of the system grows, if the expression in parentheses is nonzero.
This means that in a large system the neutrality condition must be satisfied:∑

a

qa = 0. (10)

The second term in (9) has an ultraviolet divergence. If we regularize the theory somehow in a natural way,
for example, consider it as a limit of the theory with the action

S[ϕ] =

∫
d2x

(
|∂µϕ|2 −

λ

4
(|ϕ|2 − ϕ2

0)
2

)
,

this term will be finite and will depend on the structure of the vortex core. Below we see that the value r0
does not significantly affect the result.

Let us now try to write a (Euclidean) functional integral in the form

Z[J ] =
∞∑
n=0

r−2n
0

n!

∑
q1,...,qn

q1+···+qn=0

∫
d2x1 · · · d2xn

∫
Dφe−S[φ+φq⃗x⃗]−(J,φ+φq⃗x⃗), (11)

where the integral is now taken over regular fields φ without any identification. The 1/n! factor comes from
the fact that the solution (9) does not change under permutations za ↔ zb, qa ↔ qb. Thus, the summation∑

q1,...,qn

∫
d2x1 · · · d2xn takes into account the same configuration n! times. The factor r−2n

0 is added in
order to make the integral dimensionless. One can imagine that vortices can occupy not any positions, but
are located in cells of the size ∼ r0.

We calculate the action against the background of a multivortex solution:

S[φ+ φq⃗x⃗] = S[φq⃗x⃗] + S[φ] +
1

g

∫
d2x ∂µφ∂µφq⃗x⃗.
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The first term is given by (9). The integral in the last term vanishes due to (7). Therefore,

Z[J ] = Z0[J ]
∞∑
n=0

1

n!

∑
q1,...,qn

q1+···+qn=0

r
π
g

∑
q2a−2n

0

∫
d2x1 · · · d2xn

∏
a<b

|za − zb|2
π
g
qaqb e−(J,φq⃗x⃗), (12)

Z0[J ] =

∫
Dφe−S[φ]−(J,φ). (13)

From the identification (3) it follows that we can only consider sources J of the kind

JJ⃗ y⃗(x) = −i
k∑

j=1

Jjδ(x− yj), Ji ∈ Z. (14)

Then

Z[JJ⃗ y⃗] =

∞∑
n=0

1

n!

∑
q1,...,qn

q1+···+qn=0

r
π
g

∑
a q2a+

g
4π

∑
j J

2
j −2n

0

∫
d2x1 · · · d2xn

∏
a<b

|za − zb|
2π
g
qaqb

×
∏
a,j

(
wj − za
w̄j − z̄a

)qaJj/2 ∏
j<j′

|wj − wj′ |
g
2π

JjJj′ , (15)

where wj = y1j + iy2j .
We got something like a partition function of a plasma with arbitrary particle charges (and the energy

of a charged state proportional to the squared charge). Source of the φ particles is related to plasma
particles in a complicated way, but, in principle, it can be expected that for small coupling constants
g (“low temperatures”) plasma recombines and correlation functions remain power-like, while for large
g (“high temperature”) there is a Debye screening and correlation functions decrease exponentially, which
means that the theory is massive. Such transition in a coupling constant is called the Berezinskii–Kosterlitz–
Thouless (BKT) transition.

Surely, we cannot summarize the entire perturbation theory series. However, the BKT transition point
can be exactly determined. Indeed, plasma does not form when vortices are held in a finite volume, that
is, all the integrals, except one (over the “center of mass”), are infrared convergent at large values of n.
Moreover, due to the neutrality condition

∑
a<b

qaqb =
1

2

∑
a̸=b

qaqb =
1

2

(∑
a

qa

)2

− 1

2

∑
a

q2a = −1

2

∑
a

q2a ≤ −n

2
.

Hence we find that all integrals converge for

2
π

g

(
−n

2

)
+ 2(n− 1) < 0.

At large n we find that the massless phase corresponds g < gBKT with

gBKT =
π

2
. (16)

At g > gBKT vortices do not hold and the system behaves like a plasma with a finite correlation length. It
should be noted that the answer is independent from the ultraviolet cutoff parameter r0, so that the phase
transition takes place for an arbitrarily small vortex core. Note that the condition (16) is just the condition

under which the dimensional factor r
π
g

∑
q2a−2n

0 disappears for a system of simple (q = ±1) vortices. Since the
theory has no dimensional parameters except r0, the correlation length is proportional to r0, and thus, even
the “ideal” O(2)-models has no chance to avoid the phase transition. Qualitatively, this can be explained
by the fact that the small statistical weight of vortex states is more than overcome by the large volume of
the phase space.
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Expression (15) can be rewritten differently by introducing a new field ϕ(x). Notice that

∇2 1

4π
log |x|2 = δ(x). (17)

and thus log R2

|x|2 is the propagator of a free massless boson field:

S0[ϕ] =
1

8π

∫
d2x (∂µϕ)

2. (18)

Since the equations of motion in this model have the form

∂µ∂
µϕ = 0,

we can introduce a dual field ϕ̃ by the condition

∂µϕ̃ = ϵµν ∂
νϕ, ϵ01 = −ϵ10 = 1, (19m)

in the Minkowski space, or
∂µϕ̃ = −iϵµν ∂

νϕ, ϵ12 = −ϵ21 = 1, (19e)

in the Euclidean space, or
∂ϕ̃ = ∂ϕ, ∂̄ϕ̃ = −∂̄ϕ. (20)

Though these formulas have literal meaning only on solutions of the equations of motion, it is easy to show
that even on correlation functions these equalities are not without meaning. Indeed, introduce the fields
ϕR(z) and ϕL(z̄) by the equations

ϕ(x) = ϕR(z) + ϕL(z̄),

ϕ̃(x) = ϕR(z)− ϕL(z̄).
(21)

Then the correlation functions

⟨ϕR(z)ϕR(z
′)⟩0 = log

R

z − z′
, ⟨ϕL(z̄)ϕL(z̄

′)⟩0 = log
R

z̄ − z̄′
, ⟨ϕR(z)ϕL(z̄

′)⟩0 = 0 (22)

are consistent with the theory.
Next, we need the correlation functions of the exponential operators. Since these correlation functions

contain infinite factors, we simply exclude them by defining the renormalized exponential operators:

eiαϕR,L = r
α2/2
0 :eiαϕR,L : , eiαϕ = rα

2

0 :eiαϕ: , eiαϕ̃ = rα
2

0 :eiαϕ̃: . (23)

Then the exponential operators :e(··· ): are no more dimensionless, and acquire the dimensions d = α2/2
for chiral operators and α2 for exponents of the fields ϕ, ϕ̃. These dimensions coincide with the scaling
dimensions of the operators. By definition, the we have a system of operators Oi with scaling dimensions
di, if all their correlation functions are invariant with respect to the substitutions

Oi(x) → sdiOi(sx)

in all operators simultaneously.
The correlation functions of the operator exponents in such a model are equal to

⟨ :eiα1ϕR(z1): · · · :eiαnϕR(zn): ⟩0 = R− 1
2(

∑
a αa)

2 ∏
a<b

(za − zb)
αaαb ,

⟨ :eiα1ϕL(z̄1): · · · :eiαnϕL(z̄n): ⟩0 = R− 1
2(

∑
a αa)

2 ∏
a<b

(z̄a − z̄b)
αaαb .

(24)

A more accurate description of this renormalization procedure is given at the end of the lecture in the
Explanation. In the limit R → ∞ the r.h.s. are only nonzero if

n∑
a=1

αa = 0. (25)
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Then we have〈
k∏

j=1

eiβj ϕ̃(yj)
n∏

a=1

eiαaϕ(xa)

〉
0

= r
∑

a α2
a+

∑
j β

2
j

0

∏
a<b

|za − zb|2αaαb
∏
j<j′

|wj − wj′ |2βjβj′
∏
a,j

(
wj − za
w̄j − z̄a

)αaβj

×

{
1,

∑
αa =

∑
βj = 0;

0 otherwise.
(26)

This expression exactly matches the integrand in (15) for

αa =

√
π

g
qa, βj =

√
g

4π
Jj . (27)

From this we obtain

Z[JJ⃗ y⃗] =

∞∑
n=0

1

n!

∑
q1,...,qn

q1+···+qn=0

r−2n
0

∫
d2x1 · · · d2xn

〈
k∏

j=1

ei
√

g
4π

Jj ϕ̃(yj)
n∏

a=1

e
i
√

π
g
qaϕ(xa)

〉
0

. (28)

Note that the expression under the sign of the integral is remarkably symmetric with respect to the replace-
ments

g ↔ (2π)2g−1, k ↔ n, qa ↔ Jj , ϕ(x) ↔ ϕ̃(x).

Moreover, the Lagrangian of the free field is written identically in terms of both the fields ϕ and ϕ̃. Thus
we can identify

φ(x) =

√
g

4π
ϕ̃(x). (29)

Let us make an important approximation, which does not change the properties of the phase transition.
Let us neglect the vortices with |q| > 1, as their contribution decreases with decreasing r0 faster than the
contribution of |q| charge 1 vortices. Then the generating functional can be rewritten as

Z[JJ⃗ y⃗] =
∞∑
n=0

r−4n
0

(2n)!

∫
d2x1 · · · d2x2n

∑
q1,...,q2n=±1

〈
k∏

j=1

ei
√

g
4π

Jj ϕ̃(yj)
2n∏
a=1

e
iqa

√
π
g
ϕ(xa)

〉
0

=
∞∑
n=0

r−4n
0

(2n)!

∫
d2x1 · · · d2x2n

〈
k∏

j=1

ei
√

g
4π

Jj ϕ̃(yj)
2n∏
a=1

(
e
i
√

π
g
ϕ(xa)

+ e
−i

√
π
g
ϕ(xa)

)〉
0

=

〈
k∏

j=1

ei
√

g
4π

Jj ϕ̃(yj) exp

(
2r−2

0

∫
d2x cos

√
π

g
ϕ(x)

)〉
0

=

∫
Dϕe−SSG[ϕ]

k∏
j=1

ei
√

g
4π

Jj ϕ̃(yj), (30)

where

SSG[ϕ] =

∫
d2x

(
(∂µϕ)

2

8π
− µ :cosβϕ:

)
(31)

is the action of the sine-Gordon model with the parameters

β =

√
π

g
, µ = 2r

π
g
−2

0 . (32)

We have written the action in terms of the renormalized exponents. In what follows we will usually omits
the symbols :· · ·: and mean by exponents just the renormalized ones by default.

We will study the sine-Gordon model in more detail next time, but for now we introduce several important
concepts. We will consider the sine-Gordon model as perturbation of the free massless boson. Then the
scaling dimension of the perturbation operator will be equal

dpert = β2.
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When dpert < 2 the perturbation is called relevant . It significantly changes the behavior of the system at
large scales and does not change at small ones. When dpert > 2 perturbation is called irrelevant and does
not change qualitatively the infrared behavior. The case dpert = 2 is called marginal. In the case of the sine-
Gordon model, just this case corresponds to the BKT transition point.

Explanation

This explanation concerns the definition of the exponential operators in the theory of a free scalar field.
For simplicity, we restrict ourselves to the functionals of the field φ(z) ≡ φR(z). An expansion can be
written for this field

φ(z) = Q− iP log z +
∑
k ̸=0

ak
ik

z−k, (33)

where Hermitian operators P,Q and operators of creation-annihilation ak = a+−k satisfy the relations

[P,Q] = −i, [ak, al] = kδk+l,0. (34)

If we determine the vacuum |0⟩ by the conditions

P |0⟩ = ak|0⟩ = 0 (k > 0), (35)

it is easy to check that

⟨φ(z′)φ(z)⟩ = ⟨Q2⟩+ ⟨φ(z′)φ(z)⟩∗ = ⟨Q2⟩+ log
1

z′ − z
, (36)

The indefinite expression ⟨Q2⟩ can be identified with an infrared term logR in (22). It is also easy to see
that the standard normal ordering that puts P to the right of Q and ak (k > 0) to the right of a−k meets
the condition

φ(z1)φ(z2) = :φ(z1)φ(z2): + ⟨φ(z1)φ(z2)⟩∗.

More generally, the normal ordering can be specified by the recursion relation

:φ(z1) · · ·φ(zn):φ(z) = :φ(z1) · · ·φ(zn)φ(z): +
n∑

i=1

:φ(z1)
î

· · ·φ(zn): ⟨φ(zi)φ(z)⟩∗ (37)

with the initial condition
:1: = 1. (38)

Here is the index î above the ellipsis means that the ith factor is excluded from the normal product. From
this definition it is easy to derive the identity

:φ(z1) · · ·φ(zm): :φ(w1) · · ·φ(wn): =

=

min(m,n)∑
k=0

∑
1≤i1<···<ik≤m
1≤j1,...,jk≤n

:φ(z1)
î1...îk
· · · φ(zm)φ(w1)

ĵ1...ĵk
· · · φ(wn):

k∏
l=1

⟨φ(zil)φ(wjl)⟩∗. (39)

Return to the operator exponents eiαφ(z). Operator products of formal exponents

eiα1φ(z1)eiα2φ(z2) = e−
1
2
α1α2[φ(z1),φ(z2)]eiα1φ(z1)+iα2φ(z2) (40)

rather poorly defined, because they contain a poorly defined commutator. Correlation functions of formal
exponents

⟨eiα1φ(z1) · · · eiαNφ(zN )⟩ =
(r0
R

) 1
2

∑
i α

2
i
∏
i<j

(
zi − zj

R

)αiαj

(41)

contain ultraviolet divergences. Thus, formal exponents are poorly defined.
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Normal exponents are well defined, all of their correlators are ultraviolet finite. It can be verified that

⟨ :eiα1φ(z1)+···+iαnφ(zn): ⟩ = ⟨ei(α1+···+αN )Q⟩ = R− 1
2
(
∑

αi)
2

. (42)

The operator products of normal exponents have the form

:eiα1φ(z1): :eiα2φ(z2): = (z1 − z2)
α1α2 :eiα1φ(z1)+iα2φ(z2): . (43)

From this it is not difficult to find the correlation functions

⟨ :eiα1φ(z1): · · · :eiαNφ(zN ): ⟩ = R− 1
2
(
∑

αi)
2∏
i<j

(zi − zj)
αiαj . (44)

Comparing this to (41), we see that

eiαφ(z) = r
α2/2
0 :eiαφ(z): ,

that is, normal exponents depending on one field φ(z), are nothing but the renormalized versions of the full
operator exponents defined in (23). Outside of this explanation, in order not to clutter up formulas, we will
omit the normal product sign.

The expression (44) explicitly contains infrared cutoff R, but has a good limit as R → ∞:

⟨ :eiα1φ(z1): · · · :eiαNφ(zN ): ⟩ =

{∏
i<j(zi − zj)

αiαj , if
∑

i αi = 0;

0, if
∑

i αi ̸= 0.
(45)

In particular, on the infinite plane

⟨ :eiα1φ(z1)+···+iαnφ(zn): ⟩ =

{
1, if

∑
i αi = 0;

0, if
∑

i αi ̸= 0.
(46)

Problems

1. Calculate the space integrals and obtain (8).
2. Derive the formula (17).
3. Show that for the free field ϕ with the action S0[ϕ] the pair correlation function is equal to

⟨ϕ(x)ϕ(y)⟩ = log
R2

(x− y)2

with some scale of the infrared cutoff R.
4. Find the conditions under which the operators eiα1φR(z)+iβ1φL(z̄) and eiα2φR(z′)+iβ2φL(z̄

′) are mutually
local, i.e. possess correlation functions single-valued when x goes around x′.

5∗. Suppose the field ϕ(x) with the action S0[ϕ] is defined on a circle of radius R (ϕ ∼ ϕ + 2πR) and
lives on spatial circle (x1 ∼ x1 +2π) with periodic boundary conditions. Show that the theory is equivalent
to the field theory ϕ̃(x) defined on a circle of radius 2/R (T -duality). To solve the problem you can use the
expansion in modes in the Hamiltonian formalism. In this case, it should be noted that while traversing
the spatial cycle the field may change by an integer number periods 2πR (winding number). The duality
transformation interchanges the winding number and the quantum number of momentum.
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