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Bethe equations

Let

s(u) =

{
sinu for |∆| < 1;

shu for ∆ < −1;
c(u) =

{
cosu for |∆| < 1;

chu for ∆ < −1.

The explicit form of the Bethe equations:(
s(ui)

s(λ− ui)

)N
=

n∏
j=1

(j 6=i)

s(ui − uj + λ)

s(ui − uj − λ)
. (1)

Let
ui =

λ

2
+ ivi, eip(v) =

s(λ/2 + iv)

s(λ/2− iv)
, eiθ(v) =

s(λ+ iv)

s(λ− iv)
.

The variables vi are defined in such a way that |zi| = 1 for real values of vi. Take
logarithm of the Bethe equations:

Np(vi) = 2πIi +
n∑
j=1

θ(vi − vj),

where Ii ∈ Z + 1
2
if n ∈ 2Z and Ii ∈ Z if n ∈ 2Z + 1.
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Solving the Bethe equations for the ground state

Let us obtain the ground state, i.e. the state with the largest eigenvalue of the
transfer matrices in the thermodynamic limit. Note that the XXZ one-particle
energy

ε(v) = 2∆− 2 cos p(v)

is an even function, ε(−v) = ε(v) with an absolute minimum at v = 0 and
monotonous for 0 ≤ v <∞ if |∆| < 1 and for 0 ≤ v ≤ π

2
for ∆ < −1. It means

that the ‘Dirac sea’ must be symmetric.

Thus formulate the conjectures:
1 In the ground state all Bethe roots vi are real and, in the thermodynamic

limit, densely fill a region −vF < v < vF .
2 In the ground state all values of Ii are consecutive.
3 In the ground state Sz/N → 0 as N →∞.

Taking the thermodynamic limit in a usual way, we obtain the integral equations

p′(v) = ρ(v) +

∫ vF

−vF

dv′

2π
θ′(v − v′)ρ(v′),

∫ vF

−vF

dv

2π
ρ(v) =

n

N
, (2)

where ρ(v) = 2πdI
Ndv

is the density of particles = density of states.
We have

p′(v) =
s(λ)

s(λ
2

+ iv)s(λ
2
− iv)

, θ′(v) =
2s(2λ)

s(λ+ iv)s(λ− iv)
.
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Solving the Bethe equations for the ground state

For which values v̄F of vF the equation is solvable analytically?

If |∆| < 1 the functions p′(v), θ′(v) ∼ e−2|v| as v → ±∞. Hence, v̄F =∞.
Hence,

ρ(v) =

∫ ∞
−∞

dk ρke
−ikv , . . . (3)

If ∆ < −1 the functions p′(v), θ′(v) are periodic with the period π. Hence,
v̄F = π

2
. Hence,

ρ(v) = 2
∑
k∈2Z

ρke
−ikv , . . . (4)

Then
ρk = p′k − θ

′
kρk,

We have

p′k =
sh

(π−λ)k
2

sh πk
2

, θ′k =
sh

(π−2λ)k
2

sh πk
2

(|∆| < 1);

p′k = e−λ|k|/2, θ′k = e−λ|k| (∆ < −1).

We have for the density

ρk =
p′k

1 + θ′k
=

1

2 ch λk
2

in both cases. Then
n

N
=

∫ v̄F

−v̄F

dv

2π
ρ(v) = ρ0 =

1

2
⇒

Sz

N
→ 0.
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Free energy

Recall the expression for the eigenvalue

Λ(u;u1, . . . , un) = aN (u)
n∏
i=1

a(ui − u)

b(ui − u)
+ bN (u)

n∏
i=1

a(u− ui)
b(u− ui)

. (??)

Now let us calculate the free energy per vertex of the six-vertex model:

f = − lim
N→∞

log Λmax(u)

N
= −max

(
log a(u) +

∫ vF

−vF

dv

2π
ρ(v),

log b(u) +

∫ vF

−vF

dv

2π
ρ(v)

)
.

For vF = v̄F we can use the Fourier transform. For |∆| < 1 we have

f = min

(
− log a(u)−

∫
dk

k
ρ−kp

′
ke
ku,− log b(u)−

∫
dk

k
ρkp
′
ke
k(λ−u)

)
.

By symmetrizing the we find that the two alternatives coincide, so that

f = − log a(u)−
∫ ∞

0

dk

k

shuk sh π−λ
2
k

sh π
2
k ch λ

2
k

= − log b(u)−
∫ ∞

0

dk

k

sh(λ− u)k sh π−λ
2
k

sh π
2
k ch λ

2
k

. (5)
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−vF

dv

2π
ρ(v) log

a(iv − u+ λ/2)

b(iv − u+ λ/2)
,

log b(u) +

∫ vF

−vF

dv

2π
ρ(v) log

a(u− iv − λ/2)

b(u− iv − λ/2)

)
.

For vF = v̄F we can use the Fourier transform. For |∆| < 1 we have

f = min

(
− log a(u)−

∫
dk

k
ρ−kp

′
ke
ku,− log b(u)−

∫
dk

k
ρkp
′
ke
k(λ−u)

)
.

By symmetrizing the we find that the two alternatives coincide, so that

f = − log a(u)−
∫ ∞

0

dk

k

shuk sh π−λ
2
k

sh π
2
k ch λ

2
k

= − log b(u)−
∫ ∞

0

dk

k

sh(λ− u)k sh π−λ
2
k

sh π
2
k ch λ

2
k
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Free energy

In the case ∆ < −1 the free energy reads

f = min

− log a(u)−
1

π

∑
k∈2Z

1

k
ρ−kp

′
ke
ku,− log b(u)−

1

π

∑
k∈2Z

1

k
ρkp
′
ke
k(λ−u)

 .

Finally, we have

f = − log a(u)− u−
∞∑
m=1

e−λm sh 2um

m chλm

= − log b(u)− (λ− u)−
∞∑
m=1

e−λm sh 2(λ− u)m

m chλm
. (6)

Why are these two cases so different? Because in the case |∆| < 1 there is a
gapless spectrum, while in the case ∆ < −1 there is a gap between the two largest
eigenvalues of T (u) and all other eigenvalues.
What if vF < v̄F ? This case corresponds to general homogeneous six-vertex model
with arbitrary a, a′, b, b′, c, c′. The ratio c/c′ is inessential, but nonunit rations
a/a′, b/b′ correspond to an external field. They can be related to vF . The integral
equations do not have an analytic solution, but can be solved numerically. The
two alternatives for the free energy are different.
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