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Ice model: configurations

The ‘ice model’ ( is Oxygen, is Hydrogen):
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Each oxygen atom has two hydrogen atom next to it.

Small arrows on the right
figure define the orientation of the lattice lines and vertices, which will be
important later.

= = +

= = −

= = +

= = −

Michael Lashkevich Lecture 2. Six-vertex model



Ice model: configurations

The ‘ice model’ ( is Oxygen, is Hydrogen):

=

=

−

−

+

+

−

+

+

+

+

+

+

−

−

−

−

−

−

−

−

+

− − − + +

+ − − + +

− − − − −

− + + + −

Each oxygen atom has two hydrogen atom next to it.

Small arrows on the right
figure define the orientation of the lattice lines and vertices, which will be
important later.

=

= +

=

= −

=

= +

=

= −

Michael Lashkevich Lecture 2. Six-vertex model



Ice model: configurations

The ‘ice model’ ( is Oxygen, is Hydrogen):

= =

−

−

+

+

−

+

+

+

+

+

+

−

−

−

−

−

−

−

−

+

− − − + +

+ − − + +

− − − − −

− + + + −

Each oxygen atom has two hydrogen atom next to it. Small arrows on the right
figure define the orientation of the lattice lines and vertices, which will be
important later.

= = +

= = −

= = +

= = −

Michael Lashkevich Lecture 2. Six-vertex model



Ice model: Boltzmann weights

Six-vertex model: the Boltzmann weights are associated with vertices:

Z =
∑

configu-
rations

∏
vertices

R
ε′1ε
′
2

ε1ε2 , R
ε′1ε
′
2

ε1ε2 = ε2 ε′2

ε1

ε′1

, ε′1 + ε′2 = ε1 + ε2

Ice condition

.

We have six vertex configurations

R++
++ = a = = = + +

+

+

, R−−−− = a′ = = = − −

−

−

R+−
+− = b = = = − −

+

+

, R−+
−+ = b′ = = = + +

−

−

R−+
+− = c = = = −

−

+

+ , R+−
−+ = c′ = = = +

+

−

−

R =


a

b c
c′ b′

a′

 in the basis (++), (+−), (−+), (−−).
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Six-vertex models: toroidal boundary conditions and exact solvability

We will consider the six-vertex models with toroidal boundary conditions: any
upper line connects to the lower one and any lower line connects to the upper one.

With these conditions the ratio c′/c is not essential. Indeed, consider a
configuration
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c c′

−
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−

c

+ + + + +

+ + + +

c′
−

c

You see that the number of c and c′ is equal. Since the signs “−” can be organized
in such paths and these paths must be closed on the torus, this will be valid for all
configurations. Thus we may assume c′ = c without loss of generality.
The difference between a and a′ is more essential, but it can be interpreted as an
homogeneous external field. Indeed, 2#(a)− 2#(a′) = #(+)−#(−).
The difference between b and b′ cannot be reduced to an “anisotropic” external
field, which has opposite signs for horizontal and vertical lines.
It turns out that the model is exactly solvable, if b′ = b. If also a′ = a it admits
spontaneous symmetry breaking. Below we will just consider this case. We will
see that the solution for a′ 6= a is also based on the symmetric case.
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If also a′ = a it admits
spontaneous symmetry breaking. Below we will just consider this case. We will
see that the solution for a′ 6= a is also based on the symmetric case.
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Six-vertex models: symmetric case

We will consider the symmetric six-vertex model:

R
−ε′1 −ε

′
2

−ε1 −ε2 = R
ε′1ε
′
2

ε1ε2

or
a′ = a, b′ = b c′ = c.

The transfer matrix

T
ε′1...ε

′
N

ε1...εN =
∑

µ1...µN

R
µ2ε
′
1

µ1ε1R
µ3ε
′
2

µ2ε2 . . . R
µ1ε
′
N

µNεN . (1)

Let us consider the matrix R as an operator in the tensor product of two two-
dimensional spaces:

R : C2 ⊗ C2 → C2 ⊗ C2, vε1 ⊗ vε2 7→ Rε1ε2
ε′1ε
′
2
vε′1
⊗ vε′2 .

Here vε is the natural basis in V = C2. Consider the tensor product
V1 ⊗ V2 ⊗ · · · ⊗ Vk of identical spaces Vi ' V . Let Rij is the R matrix acting on
Vi ⊗ Vj .
Then the transfer matrix can be written as

T = trV0 (R0N . . . R02R01) : V1 ⊗ V2 ⊗ · · · ⊗ VN → V1 ⊗ V2 ⊗ · · · ⊗ VN . (2)

The space V1 ⊗ · · · ⊗ VN is called quantum space, while the space V0 is called
auxiliary space.

Michael Lashkevich Lecture 2. Six-vertex model



Six-vertex models: symmetric case

We will consider the symmetric six-vertex model:

R
−ε′1 −ε

′
2

−ε1 −ε2 = R
ε′1ε
′
2

ε1ε2

or
a′ = a, b′ = b c′ = c.

The transfer matrix

T
ε′1...ε

′
N

ε1...εN =
∑

µ1...µN

R
µ2ε
′
1

µ1ε1R
µ3ε
′
2

µ2ε2 . . . R
µ1ε
′
N

µNεN . (1)

Let us consider the matrix R as an operator in the tensor product of two two-
dimensional spaces:

R : C2 ⊗ C2 → C2 ⊗ C2, vε1 ⊗ vε2 7→ Rε1ε2
ε′1ε
′
2
vε′1
⊗ vε′2 .

Here vε is the natural basis in V = C2. Consider the tensor product
V1 ⊗ V2 ⊗ · · · ⊗ Vk of identical spaces Vi ' V . Let Rij is the R matrix acting on
Vi ⊗ Vj .
Then the transfer matrix can be written as

T = trV0 (R0N . . . R02R01) : V1 ⊗ V2 ⊗ · · · ⊗ VN → V1 ⊗ V2 ⊗ · · · ⊗ VN . (2)

The space V1 ⊗ · · · ⊗ VN is called quantum space, while the space V0 is called
auxiliary space.

Michael Lashkevich Lecture 2. Six-vertex model



Six-vertex models: symmetric case

We will consider the symmetric six-vertex model:

R
−ε′1 −ε

′
2

−ε1 −ε2 = R
ε′1ε
′
2

ε1ε2

or
a′ = a, b′ = b c′ = c.

The transfer matrix

T
ε′1...ε

′
N

ε1...εN =
∑

µ1...µN

R
µ2ε
′
1

µ1ε1R
µ3ε
′
2

µ2ε2 . . . R
µ1ε
′
N

µNεN . (1)

Let us consider the matrix R as an operator in the tensor product of two two-
dimensional spaces:

R : C2 ⊗ C2 → C2 ⊗ C2, vε1 ⊗ vε2 7→ Rε1ε2
ε′1ε
′
2
vε′1
⊗ vε′2 .

Here vε is the natural basis in V = C2.

Consider the tensor product
V1 ⊗ V2 ⊗ · · · ⊗ Vk of identical spaces Vi ' V . Let Rij is the R matrix acting on
Vi ⊗ Vj .
Then the transfer matrix can be written as

T = trV0 (R0N . . . R02R01) : V1 ⊗ V2 ⊗ · · · ⊗ VN → V1 ⊗ V2 ⊗ · · · ⊗ VN . (2)

The space V1 ⊗ · · · ⊗ VN is called quantum space, while the space V0 is called
auxiliary space.

Michael Lashkevich Lecture 2. Six-vertex model



Six-vertex models: symmetric case

We will consider the symmetric six-vertex model:

R
−ε′1 −ε

′
2

−ε1 −ε2 = R
ε′1ε
′
2

ε1ε2

or
a′ = a, b′ = b c′ = c.

The transfer matrix

T
ε′1...ε

′
N

ε1...εN =
∑

µ1...µN

R
µ2ε
′
1

µ1ε1R
µ3ε
′
2

µ2ε2 . . . R
µ1ε
′
N

µNεN . (1)

Let us consider the matrix R as an operator in the tensor product of two two-
dimensional spaces:

R : C2 ⊗ C2 → C2 ⊗ C2, vε1 ⊗ vε2 7→ Rε1ε2
ε′1ε
′
2
vε′1
⊗ vε′2 .

Here vε is the natural basis in V = C2. Consider the tensor product
V1 ⊗ V2 ⊗ · · · ⊗ Vk of identical spaces Vi ' V . Let Rij is the R matrix acting on
Vi ⊗ Vj .

Then the transfer matrix can be written as

T = trV0 (R0N . . . R02R01) : V1 ⊗ V2 ⊗ · · · ⊗ VN → V1 ⊗ V2 ⊗ · · · ⊗ VN . (2)

The space V1 ⊗ · · · ⊗ VN is called quantum space, while the space V0 is called
auxiliary space.

Michael Lashkevich Lecture 2. Six-vertex model



Six-vertex models: symmetric case

We will consider the symmetric six-vertex model:

R
−ε′1 −ε

′
2

−ε1 −ε2 = R
ε′1ε
′
2

ε1ε2

or
a′ = a, b′ = b c′ = c.

The transfer matrix

T
ε′1...ε

′
N

ε1...εN =
∑

µ1...µN

R
µ2ε
′
1

µ1ε1R
µ3ε
′
2

µ2ε2 . . . R
µ1ε
′
N

µNεN . (1)

Let us consider the matrix R as an operator in the tensor product of two two-
dimensional spaces:

R : C2 ⊗ C2 → C2 ⊗ C2, vε1 ⊗ vε2 7→ Rε1ε2
ε′1ε
′
2
vε′1
⊗ vε′2 .

Here vε is the natural basis in V = C2. Consider the tensor product
V1 ⊗ V2 ⊗ · · · ⊗ Vk of identical spaces Vi ' V . Let Rij is the R matrix acting on
Vi ⊗ Vj .
Then the transfer matrix can be written as

T = trV0 (R0N . . . R02R01) : V1 ⊗ V2 ⊗ · · · ⊗ VN → V1 ⊗ V2 ⊗ · · · ⊗ VN . (2)

The space V1 ⊗ · · · ⊗ VN is called quantum space, while the space V0 is called
auxiliary space.

Michael Lashkevich Lecture 2. Six-vertex model



Six-vertex models: L operator

The operator under the trace is

L = R0N . . . R02R01 : V0 ⊗ V1 ⊗ · · · ⊗ VN → V0 ⊗ V1 ⊗ · · · ⊗ VN . (3)

We will consider it as an operator in the quantum space and a matrix in the
auxiliary space

L =

(
A B
C D

)
, A,B,C,D : V1 ⊗ V2 ⊗ · · · ⊗ VN → V1 ⊗ V2 ⊗ · · · ⊗ VN .

Then
T = trV0 L = A+D. (4)
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Commuting transfer matrices and Yang–Baxter equation

Integrability demands the existence of extra commuting integrals of motion In:

[T, In] = 0, [Im, In] = 0.

How to construct them?

Let use search for the operators T ′ = trV0
L′, L′ = R′0N . . . R′02R

′
01 with some

matrix R′.

Theorem

If there exist nondegenerate matrices R′, R′′ such that

R′′12R
′
13R23 = R23R

′
13R
′′
12, (5)

or, graphically

R R′

R′′

=

RR′

R′′

(5′)

then
[T, T ′] = 0 (6)
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Commuting transfer matrices: a proof

A graphical proof:

T ′T =

L L′

=

R′′−1

R′′

L L′

=

R′′−1

R′′

=

R′′−1

R′′
=

L′ L

R′′−1

R′′

=

R′′

R′′−1

L′ L

=

L′ L

= TT ′.

(7)

A more conventional proof is based on the relation

R′′12L
′
1L2 = L2L

′
1R
′′
12,

which is proved by induction. Then

T ′T = trV1⊗V2 (L′1L2) = trV1⊗V2 ((R′′12)−1R′′12L
′
1L2) = trV1⊗V2

((R′′12)−1L2L
′
1R
′′
12)

= trV1⊗V2
(R′′12(R′′12)−1L2L

′
1) = trV1⊗V2

(L2L
′
1) = TT ′.
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Yang–Baxter equation: solution for the six-vertex model

The solution can be found in the form

R = R(λ, u2 − u3),

R′ = R(λ, u1 − u3),

R′′ = R(λ, u1 − u2)

(8)

with a given matrix-valued function R(λ, u).

Since the common factor of a, b, c is
arbitrary, assume a(λ, u) = 1. Trigonometric solution(s):

b(λ, u) =
sinu

sin(λ− u)
,

b(λ, u) =
shu

sh(λ− u)
,

c(λ, u) =
sinλ

sin(λ− u)

c(λ, u) =
shλ

sh(λ− u)

(a < b+ c, b < a+ c, c < a+ b);

(c > a+ b).

The cases a > b+ c and b > a+ c and not interesting from the thermodynamic
point of view and will be discussed later. The parameter λ is the same for
R,R′, R′′ and can be expressed as

− cosλ
− chλ

}
= ∆ ≡

a2 + b2 − c2

2ab
. (9)

Thus we will omit the parameter λ from now on:

R(u) ≡ R(λ, u), a(u) ≡ a(λ, u) etc.
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Yang–Baxter equation: spectral parameter

The spectral parameters can be associated to lines:

R(λ, u− v)ε3ε4ε1ε2
= ε2

v
ε4

ε1

u

ε3

This R matrix is the solution to the Yang–Baxter equation in the form

R12(λ, u1 − u2)R13(λ, u1 − u3)R23(λ, u2 − u3)

= R23(λ, u2 − u3)R13(λ, u1 − u3)R12(λ, u1 − u2). (10)

Graphically:

u1u2

u3

=

u1u2

u3

(10′)

Besides, the R matrix satisfy the relations

b(u)R(λ− u)ε3ε4ε1ε2
= R(u)ε2 −ε3ε4 −ε1 , R12(u)R21(−u) = 1, R(0) = P = .

(11)
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= R23(λ, u2 − u3)R13(λ, u1 − u3)R12(λ, u1 − u2). (10)

Graphically:

u1u2

u3

=

u1u2

u3

(10′)

Besides, the R matrix satisfy the relations

b(u)R(λ− u)ε3ε4ε1ε2
= R(u)ε2 −ε3ε4 −ε1 , R12(u)R21(−u) = 1, R(0) = P = .

(11)
Michael Lashkevich Lecture 2. Six-vertex model



Integrals of motion

We have
[T (u), T (u′)] = 0 ∀u, u′. (12)

But not all the integrals of motion T (u) are independent.

First of all, T (0) is nothing but the shift operator:

T (0) =

u

u

u

u

= (13)

Then decompose the product T−1(0)T (u) in u:

T−1(0)T (u) = 1−
∞∑
n=1

Hnun

n!
. (14)

Hamiltonians Hn commute with T (u) and mutually commute:

[T (0), Hn] = [Hm, Hn] = 0 ∀m,n. (15)

The set T (0), H1, . . . , HN−1 form a set of independent integrals of motion.
Operators Hn are local in the sense that each of them is a sum of term, which
involves a finite number (n+ 1) of neighboring nodes.
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Six-vertex model and XXZ Heisenberg chain

Let us find the Hamiltonian H1 explicitly:

−H1 = T−1(0)T ′(0) =

d

du

∣∣∣∣
u=0

0

0

0

0

u

=
d

du

∣∣∣∣
u=0

N∑
n=1

VN

Vn+2

Vn+1

Vn

V1

=
d

du

∣∣∣∣
u=0

N∑
n=1

VN

...
Vn+2

Vn+1

Vn u

...
V1

=
N∑
n=1

Ř′n,n+1(0),

where

Ř(u) = PR(u) =

a(u)
c(u) b(u)
b(u) c(u)

a(u)

 = 1 +
u

sinλ

0
cosλ 1

1 cosλ
0

+O(u2)
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Six-vertex model and XXZ Heisenberg chain

We have

Ř(u) = 1−
1

sinλ

(
h+

cosλ

2

)
u+O(u2),

where
h = −

1

2
(σx ⊗ σx + σy ⊗ σy − cosλ σz ⊗ σz).

Hence
H1 sinλ = HXXZ +

N

2
cosλ,

where HXXZ is the Hamiltonian of the XXZ Heisenberg chain:

HXXZ = −
1

2

N∑
n=1

(σxnσ
x
n+1 + σynσ

y
n+1 + ∆σznσ

z
n+1) (16)

with ∆ given by (9):

∆ =
a2 + b2 − c2

2ab
=

{
− cosλ

− chλ
.

This leads to the identification of the space HN and the quantum space of the six-
vertex model:

HN = V ⊗ · · · ⊗ V︸ ︷︷ ︸, v± = |±〉.
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Ř(u) = 1−
1

sinλ

(
h+

cosλ

2

)
u+O(u2),

where
h = −

1

2
(σx ⊗ σx + σy ⊗ σy − cosλ σz ⊗ σz).

Hence
H1 sinλ = HXXZ +

N

2
cosλ,

where HXXZ is the Hamiltonian of the XXZ Heisenberg chain:

HXXZ = −
1

2

N∑
n=1

(σxnσ
x
n+1 + σynσ

y
n+1 + ∆σznσ

z
n+1) (16)

with ∆ given by (9):

∆ =
a2 + b2 − c2

2ab
=

{
− cosλ

− chλ
.

This leads to the identification of the space HN and the quantum space of the six-
vertex model:

HN = V ⊗ · · · ⊗ V︸ ︷︷ ︸, v± = |±〉.

Michael Lashkevich Lecture 2. Six-vertex model



Six-vertex model and XXZ Heisenberg chain

We have
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XXZ Heisenberg chain: pseudovacuums

Due to the ice condition the z component of total spin

Sz =
1

2

N∑
i=1

σzn

is a conserved charge:
[T (u), Sz ] = [HXXZ, S

z ] = 0. (17)

Thus the space of states is split into the sum over eigenvalues of Sz .

Recall that

Sz |Ω±〉 = ±
N

2
|Ω±〉, HXXZ|Ω±〉 = −

N∆

2
|Ω±〉.

The action of the transfer matrix:

T (u)|Ω+〉

=
∑
ε=±

+ +

+ +

+ +

+ +

ε

ε

= (aN (u) + bN (u))|Ω+〉.

Finally,
T (u)|Ω±〉 = (aN (u) + bN (u))|Ω±〉.
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Six-vertex model: three regimes

1. Ferroelectric regime: ∆ > 0. Let a > b+ c. Ground configurations:
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On a large lattice any excitations have vanishing weight. ⇒ Frozen order.
2. Antiferroelectric regime: ∆ < −1, c > a+ b.
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The excitations have finite weight. ⇒ Nontrivial thermodynamics.
3. Disordered regime: |∆| < 1. No ground configurations. It turns out that this
regime is always critical.
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On a large lattice any excitations have vanishing weight. ⇒ Frozen order.
2. Antiferroelectric regime: ∆ < −1, c > a+ b.
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The excitations have finite weight. ⇒ Nontrivial thermodynamics.
3. Disordered regime: |∆| < 1. No ground configurations. It turns out that this
regime is always critical.
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On a large lattice any excitations have vanishing weight. ⇒ Frozen order.
2. Antiferroelectric regime: ∆ < −1, c > a+ b. Ground configurations:
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The excitations have finite weight. ⇒ Nontrivial thermodynamics.
3. Disordered regime: |∆| < 1. No ground configurations. It turns out that this
regime is always critical.
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On a large lattice any excitations have vanishing weight. ⇒ Frozen order.
2. Antiferroelectric regime: ∆ < −1, c > a+ b. Excitations?

+

−

+

−

+

+

−

+

−

+

−

+

−

+

−

−

+

−

+

−

−+−+−

−+−+−

+−+−+

+−+−+

+

−

−

+

and

−

+

−

+

−

−

+

−

+

−

+

−

+

−

+

+

−

+

−

+

+−+−+

+−+−+

−+−+−

−+−+−

The excitations have finite weight. ⇒ Nontrivial thermodynamics.
3. Disordered regime: |∆| < 1. No ground configurations. It turns out that this
regime is always critical.
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On a large lattice any excitations have vanishing weight. ⇒ Frozen order.
2. Antiferroelectric regime: ∆ < −1, c > a+ b. Excitations:
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The excitations have finite weight. ⇒ Nontrivial thermodynamics.
3. Disordered regime: |∆| < 1. No ground configurations. It turns out that this
regime is always critical.
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On a large lattice any excitations have vanishing weight. ⇒ Frozen order.
2. Antiferroelectric regime: ∆ < −1, c > a+ b. Excitations:

+

−

+

−

+

+

−

+

−

+

−

+

−

+

−

−

+

−

+

−

−+−+−

−+−+−

+−+−+

+−+−+

+
−

−

+ and

−

+

−

+

−

−

+

−

+

−

+

−

+

−

+

+

−

+

−

+

+−+−+

+−+−+

−+−+−

−+−+−

The excitations have finite weight. ⇒ Nontrivial thermodynamics.

3. Disordered regime: |∆| < 1. No ground configurations. It turns out that this
regime is always critical.
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On a large lattice any excitations have vanishing weight. ⇒ Frozen order.
2. Antiferroelectric regime: ∆ < −1, c > a+ b. Excitations:
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The excitations have finite weight. ⇒ Nontrivial thermodynamics.
3. Disordered regime: |∆| < 1. No ground configurations. It turns out that this
regime is always critical.

Michael Lashkevich Lecture 2. Six-vertex model


