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Ice model: configurations

The ‘ice model’ (@ is Oxygen, o is Hydrogen):

Each oxygen atom has two hydrogen atom next to it.
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Ice model: configurations

The ‘ice model’ (@ is Oxygen, o is Hydrogen):

ALY A St o ot
A A Y Y EE .

= AALY, = A
JAY e I
Y A A Y R I

Each oxygen atom has two hydrogen atom next to it. Small arrows on the right
figure define the orientation of the lattice lines and vertices, which will be
important later.
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Ice model: Boltzmann weights

Six-vertex model: the Boltzmann weights are associated with vertices:
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Ice model: Boltzmann weights

Six-vertex model: the Boltzmann weights are associated with vertices:

’
€1

’ ’t
E : | | €1€2 €182 __ ’ / r
R51€27 R€1€2 = €2 g €1 JFE'Q =1 +¢€2 |

configu- vertices A . T
rations 1 Ice condition

We have six vertex configurations
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Ice model: Boltzmann weights

Six-vertex model: the Boltzmann weights are associated with vertices:

E : eleh 5152 —
H RE}EQ? 6152 = °2 51 +82 =¢€1+e2|

configu- vertices
rations Ice condition

We have six vertex configurations
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Six-vertex models: toroidal boundary conditions and exact solvabilit

We will consider the six-vertex models with toroidal boundary conditions: any
upper line connects to the lower one and any lower line connects to the upper one.
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Six-vertex models: toroidal boundary conditions and exact solvabilit

We will consider the six-vertex models with toroidal boundary conditions: any
upper line connects to the lower one and any lower line connects to the upper one.
With these conditions the ratio ¢’/c is not essential. Indeed, consider a

configuration
Fag s Iy I
g Iy ij C+
g g e e
e S
R A
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Six-vertex models: toroidal boundary conditions and exact solvabilit

We will consider the six-vertex models with toroidal boundary conditions: any
upper line connects to the lower one and any lower line connects to the upper one.
With these conditions the ratio ¢’/c is not essential. Indeed, consider a

configuration

Fag s Iy I

¢
g g ey g
g g e e
T c

I [ Kl e

R A
You see that the number of ¢ and ¢’ is equal. Since the signs “—” can be organized
in such paths and these paths must be closed on the torus, this will be valid for all
configurations.
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Six-vertex models: toroidal boundary conditions and exact solvabilit

We will consider the six-vertex models with toroidal boundary conditions: any
upper line connects to the lower one and any lower line connects to the upper one.
With these conditions the ratio ¢’/c is not essential. Indeed, consider a
configuration
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You see that the number of ¢ and ¢’ is equal. Since the signs “—” can be organized
in such paths and these paths must be closed on the torus, this will be valid for all
configurations. Thus we may assume ¢’ = ¢ without loss of generality.
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Six-vertex models: toroidal boundary conditions and exact solvabilit

We will consider the six-vertex models with toroidal boundary conditions: any
upper line connects to the lower one and any lower line connects to the upper one.
With these conditions the ratio ¢’/c is not essential. Indeed, consider a
configuration
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You see that the number of ¢ and ¢’ is equal. Since the signs “—” can be organized
in such paths and these paths must be closed on the torus, this will be valid for all
configurations. Thus we may assume ¢’ = ¢ without loss of generality.

The difference between a and a’ is more essential, but it can be interpreted as an
homogeneous external field.
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We will consider the six-vertex models with toroidal boundary conditions: any
upper line connects to the lower one and any lower line connects to the upper one.
With these conditions the ratio ¢’/c is not essential. Indeed, consider a
configuration

+
/.| C
+

+ 1 -1+ +

opy gt gty
+

- 3+ + —

c/

+
+

You see that the number of ¢ and ¢’ is equal. Since the signs “—” can be organized
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Six-vertex models: toroidal boundary conditions and exact solvabilit

We will consider the six-vertex models with toroidal boundary conditions: any
upper line connects to the lower one and any lower line connects to the upper one.
With these conditions the ratio ¢’/c is not essential. Indeed, consider a
configuration
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c b Vo

+
+

You see that the number of ¢ and ¢’ is equal. Since the signs “—” can be organized
in such paths and these paths must be closed on the torus, this will be valid for all
configurations. Thus we may assume ¢’ = ¢ without loss of generality.

The difference between a and a’ is more essential, but it can be interpreted as an
homogeneous external field. Indeed, 2#(a) — 2#(a’) = #(+) — #(—).

The difference between b and b’ cannot be reduced to an “anisotropic” external
field, which has opposite signs for horizontal and vertical lines.
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Six-vertex models: toroidal boundary conditions and exact solvabilit

We will consider the six-vertex models with toroidal boundary conditions: any
upper line connects to the lower one and any lower line connects to the upper one.
With these conditions the ratio ¢’/c is not essential. Indeed, consider a
configuration

Fag s Iy I
g Iy ij C+
g g e e
e S
R A
You see that the number of ¢ and ¢’ is equal. Since the signs “—” can be organized

in such paths and these paths must be closed on the torus, this will be valid for all
configurations. Thus we may assume ¢’ = ¢ without loss of generality.

The difference between a and a’ is more essential, but it can be interpreted as an
homogeneous external field. Indeed, 2#(a) — 2#(a’) = #(+) — #(—).

The difference between b and b’ cannot be reduced to an “anisotropic” external
field, which has opposite signs for horizontal and vertical lines.

It turns out that the model is exactly solvable, if b’ = b.
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Six-vertex models: toroidal boundary conditions and exact solvabilit

We will consider the six-vertex models with toroidal boundary conditions: any
upper line connects to the lower one and any lower line connects to the upper one.
With these conditions the ratio ¢’/c is not essential. Indeed, consider a
configuration

Fag s Iy I
g Iy ij C+
g g e e
e S
R A
You see that the number of ¢ and ¢’ is equal. Since the signs “—” can be organized

in such paths and these paths must be closed on the torus, this will be valid for all
configurations. Thus we may assume ¢’ = ¢ without loss of generality.

The difference between a and a’ is more essential, but it can be interpreted as an
homogeneous external field. Indeed, 2#(a) — 2#(a’) = #(+) — #(—).

The difference between b and b’ cannot be reduced to an “anisotropic” external
field, which has opposite signs for horizontal and vertical lines.

It turns out that the model is exactly solvable, if b’ = b. If also a’ = a it admits
spontaneous symmetry breaking. Below we will just consider this case.
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Six-vertex models: toroidal boundary conditions and exact solvabilit

We will consider the six-vertex models with toroidal boundary conditions: any
upper line connects to the lower one and any lower line connects to the upper one.
With these conditions the ratio ¢’/c is not essential. Indeed, consider a
configuration

Fag s Iy I
g Iy ij C+
g g e e
e S
R A
You see that the number of ¢ and ¢’ is equal. Since the signs “—” can be organized

in such paths and these paths must be closed on the torus, this will be valid for all
configurations. Thus we may assume ¢’ = ¢ without loss of generality.

The difference between a and a’ is more essential, but it can be interpreted as an
homogeneous external field. Indeed, 2#(a) — 2#(a’) = #(+) — #(—).

The difference between b and b’ cannot be reduced to an “anisotropic” external
field, which has opposite signs for horizontal and vertical lines.

It turns out that the model is exactly solvable, if b’ = b. If also a’ = a it admits
spontaneous symmetry breaking. Below we will just consider this case. We will
see that the solution for a’ # a is also based on the symmetric case.
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Six-vertex models: symmetri

We will consider the symmetric six-vertex model:
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Six-vertex models: symmetri

We will consider the symmetric six-vertex model:

’ ’ 1
—e] —€ 1€
{z 1 2 _ ll 12

—e1 —€9 €1€2

or

The transfer matrix

’ ’ ’ ’ ’
1N _ H2E] HU3EY H1EN
TSN = Y RUZREZ RN (1)

€1-..EN piel
M1 BN
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Six-vertex models: symmetri

We will consider the symmetric six-vertex model:

’ ’ 1
—e] —€ 1€
{z 1 2 _ ll 12

—e1 —€9 €1€2

or

The transfer matrix

’ ’ ’ ’ ’

€1---EN __ H2E] HHU3EY M1EN

Tsl---sN - Ru1€1 RM252 "'RHNEN' (1)
M1 BN

Let us consider the matrix R as an operator in the tensor product of two two-
dimensional spaces:

2 2 2 2 E€1€
R:C*°®C* - C ®C"* v51®052r—>R5iezvs/l®v€é.

Here v, is the natural basis in V = C2.
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Six-vertex models: symmetri

We will consider the symmetric six-vertex model:

’ ’ 1
—e] —€ 1€
{z 1 2 _ ll 12

—e1 —€9 €1€2

or

The transfer matrix
£l el p2e] pH3es 1k
16N _ 2 : 1 2 N
Tsl---sN - Ru1€1 RM252 e RHNEN' (1)
H1-N

Let us consider the matrix R as an operator in the tensor product of two two-
dimensional spaces:

R:C?®C? > C?2C?, Ve; ® Vey HRZ’I?UEQ ®v€,/z.
12
Here v, is the natural basis in V = C2. Consider the tensor product

Vi®Ve®---® Vg of identical spaces V; >~ V. Let R;; is the R matrix acting on
Vi®Vj.
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Six-vertex models: symmetric case

We will consider the symmetric six-vertex model:

’ ’ 1
—e] —€ 1€
{z 1 2 _ ll 12
—e1 —€9 €1€2

or

The transfer matrix

H1€1

’ ’ ’ ’ ’
1N _ H2E] HU3EY H1EN
T, = RIZIVRIZZ2 RN, (1)
M1 BN

Let us consider the matrix R as an operator in the tensor product of two two-
dimensional spaces:

R:C?®C? > C?2C?, Ve; ® Vey HRZizzvs/l ®v€,/z.
Here v, is the natural basis in V = C2. Consider the tensor product
Vi®Ve®---® Vg of identical spaces V; >~ V. Let R;; is the R matrix acting on

v, ® V.
Then the transfer matrix can be written as

T =try,(Ron ---Ro2Ro1): Vi®@Vea®- - QVN V1@V ® - ® Vy. (2)

The space V1 ® --- ® Vi is called quantum space, while the space Vj is called
auxiliary space.
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Six-vertex models: L operator

The operator under the trace is

L=Ron...Rp2Rp1: i@V ® - @VN > Vo ®V1® - ® V. (3)
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Six-vertex models: L operator

The operator under the trace is
L=Ron...Ro2Ro1: HOVI® - QVN =V VI® - QVN. (3)

We will consider it as an operator in the quantum space and a matrix in the
auxiliary space

LZ(é g), AB,C,D: Vi@V -V > V1 RVa®: - ® Vy.
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Six-vertex models: L operator

The operator under the trace is

L=Ron...Rp2Rp1: i@V ® - @VN > Vo ®V1® - ® V. (3)

We will consider it as an operator in the quantum space and a matrix in the
auxiliary space

LZ(é g), AB,C,D: Vi@V -V > V1 RVa®: - ® Vy.

Then
T=try, L=A+D. (4)

Lecture
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Commuting transfer matrices and Yang—Baxter equation

Integrability demands the existence of extra commuting integrals of motion Iy,:
[T,In] =0, [Im,In]=0.

How to construct them?
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Commuting transfer matrices and Yang—Baxter equation

Integrability demands the existence of extra commuting integrals of motion Iy,:
[T,In] =0, [Im,In]=0.

How to construct them?
Let use search for the operators 77 = try, L', L' = R{y ... R(4R{; with some
matrix R’
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Commuting transfer matrices and Yang—Baxter equation

Integrability demands the existence of extra commuting integrals of motion Iy,:
[T,In] =0, [Im,In]=0.

How to construct them?
Let use search for the operators 77 = try, L', L' = R{y ... R(4R{; with some
matrix R’

Theorem

If there exist nondegenerate matrices R, R such that
R/1/2R/13R23 = R23R,13Rl1l27
or, graphically

R/l

then

Lecture 2. ex model




Commuting transfer matrice

A graphical proof:

T'T =
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Commuting transfer matrice

A graphical proof:

T'T =

A

A
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Commuting transfer matrice

A graphical proof:

T'T =
R'"— 1
R//
< <
< <
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Commuting transfer matrice

A graphical proof:

T'T =
R'"— 1
R R~
< < .
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Commuting transfer matrice

A graphical proof:

T'T =
R'"— 1
R// Rllfl R//—l
< < R//
< < o
| | = | | = | | =
| | | | | | | |
I I I I I | I |
I I I I I I | |
L r L r/
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Commuting transfer matrice

A graphical proof:

T'T =

R//—l

R Rllfl R//—l Rllfl
< < R// <
- < R h
| | = | | = | | = = | |
| | | | | | | | | |
I I I I I I | | I I
I I I I I I | | L/\ \L
o S
L r L r/
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Commuting transfer matrices: a proof

A graphical proof:

T'T =
Rll—l R//
R Rllfl R//—l Rllfl R//—l
< < o~ < <
< < o~ < <
I o= o= = = ! ! = ! :
I I I I I I | | I I I I
| | | | | | | | | | | |
| | | | | | | | )7 | | L | |
o S
L I/ L L/ L' L
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Commuting transfer matrices: a proof

A graphical proof:

T'T =

Rll—l R//

R Rllfl R//—l Rllfl R//—l
< < I~ < < <
< < I~ < < <
| | = | | = | | = = | | = | | = | |
| | | | | | | | | | | | | |
I I I I I I | | I I I I I I
I I I I I I | | L/\ \L I I I I
o A R
L I/ L L/ L' L L' L
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Commuting transfer matrices: a proof

A graphical proof:

T'T =
Rll—l R//
R Rllfl R//—l Rllfl R//—l
< < I~ < < <
< < I~ < < <
| | = | | = | | = = | | = | | = | |
| | | | | | | | | | | | | |
I I I I I I | | I I I I I I
I I I I I I | | )7 I \L I I I I
o A R
L I/ L L/ L' L L' L
=TT. (7)
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Commuting transfer matrices: a proof

A graphical proof:

T'T =
Rll—l R//
R Rllfl R//—l Rllfl R//—l
< < I~ < < <
< < I~ < < <
| | = | | = | | = = | | = | | = | |
| | | | | | | | | | | | | |
I I I I I I | | I I I I I I
I I I I I I | | )7 I \L I I I I
o A R
L I/ L L/ L' L L' L
=TT. (7)

A more conventional proof is based on the relation
1oL La = Lol R,

which is proved by induction.
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Commuting transfer matrices:

a proof

A graphical proof:

T'T =
R'"— 1
R// Rllfl R//—l
< < R//
< < o~
| | = | | = | I = =
| | | | I I I |
I I I I I | I |
I I I I I I | |
L r L r/

R//
Rllf 1 RH— 1
<
< < <

A more conventional proof is based on the relation

/! / / 11
12L1L2 = L2 L1 Ry,

which is proved by induction. Then

T'T = trv,gv, (L) L2) = trv, gv, (RY2) "' RY2 L) L2) = trvy gv, (RYo) ™ La L) RYy)
= trV1®V2( /1,2( /1/2)71L2L,1) = tI‘V1®V2 (LQLII) =TT

Lecture
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Yang—Baxter equation: solution for the six-vertex model

The solution can be found in the form

R = R(\,u2 — u3),
R' = R(\,u1 — u3), (8)
R’ = R(\ u1 — u2)

with a given matrix-valued function R(\,u).
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Yang—Baxter equation: solution for the six-vertex model

The solution can be found in the form

A, u1 — ug), (8)
R’ = R(\ u1 — u2)

with a given matrix-valued function R(\,u). Since the common factor of a, b, ¢ is
arbitrary, assume a(A,u) = 1. Trigonometric solution(s):

sinu
b\ u) = —2
) sin(A — u)

in A
(A u) = L
sin(A — u)

(a<b+c, b<a+ec c<a+bd);
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Yang—Baxter equation: solution for the six-vertex model

The solution can be found in the form

A, u1 — ug), (8)
R’ = R(\ u1 — u2)

with a given matrix-valued function R(\,u). Since the common factor of a, b, ¢ is
arbitrary, assume a(A,u) = 1. Trigonometric solution(s):

sinu shu
b\ u) = —2 b u) = —— %
) sin(A — u) ) sh(\ —u)

in A h A
c(Au) = 20— M) =
sin(A — u) sh(A —u)

(a<b+c, b<a+ec c<a+bd); (¢ >a+b).
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Yang—Baxter equation: solution for the six-vertex model

The solution can be found in the form

A, u1 — ug), (8)
R’ = R(\ u1 — u2)

with a given matrix-valued function R(\,u). Since the common factor of a, b, ¢ is
arbitrary, assume a(A,u) = 1. Trigonometric solution(s):

sinu shu
b(A = b(\ =
) sin(A — u)’ ) sh(A —u)’
O ) = .sm)\ O ) = sh A
sin(A — u) sh(A —u)
(a<b+c, b<a+ec c<a+bd); (¢ >a+b).

The cases a > b+ c and b > a + ¢ and not interesting from the thermodynamic
point of view and will be discussed later.
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Yang—Baxter equation: solution for the six-vertex model

The solution can be found in the form

A, u1 — ug), (8)
R’ = R(\ u1 — u2)

with a given matrix-valued function R(\,u). Since the common factor of a, b, ¢ is
arbitrary, assume a(A,u) = 1. Trigonometric solution(s):

sinu shu
b(A = b(\ =
) sin(A — u)’ ) sh(A —u)’
O ) = .sm)\ O ) = sh A
sin(A — u) sh(A —u)
(a<b+c, b<a+ec c<a+bd); (¢ >a+b).

The cases a > b+ c and b > a + ¢ and not interesting from the thermodynamic
point of view and will be discussed later. The parameter X is the same for
R, R, R"” and can be expressed as

—cos A 7A_a2+b2—02
—chA [~ 77 2ab '
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Yang—Baxter equation: solution for the six-vertex model

The solution can be found in the form

A, u1 — ug), (8)
R’ = R(\ u1 — u2)

with a given matrix-valued function R(\,u). Since the common factor of a, b, ¢ is
arbitrary, assume a(A,u) = 1. Trigonometric solution(s):

sinu shu
b(A = b(\ =
) sin(A — u)’ ) sh(A —u)’
O ) = .sm)\ O ) = sh A
sin(A — u) sh(A —u)
(a<b+c, b<a+ec c<a+bd); (¢ >a+b).

The cases a > b+ c and b > a + ¢ and not interesting from the thermodynamic
point of view and will be discussed later. The parameter X is the same for
R, R, R"” and can be expressed as

—cos A 7A_a2+b2—02
—chA [~ 77 2ab '

Thus we will omit the parameter A from now on:

R(u) = R(\,u), a(u) = a(\, u) etc.
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Yang—Baxter equation: spectral parameter

The spectral parameters can be associated to lines:

€3

v
E3€ —
R(A\u— ’U)Ei‘Eg = €2 €4

€1
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Yang—Baxter equation: spectral parameter

The spectral parameters can be associated to lines:

€3

v
E3€
R\ u—v)32t = e2 €4
u

€1
This R matrix is the solution to the Yang—Baxter equation in the form

Ri2(A, ur — u2)Ri3(X, ur — uz)Raz (A, uz — u3)
= Ra3(A\,u2 —uz)R13(\, u1 —uz)Ria(A, w1 —uz).  (10)
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Yang—Baxter equation: spectral parameter

The spectral parameters can be associated to lines:

€3

v
E3€
R\ u—v)32t = e2 €4
u

€1
This R matrix is the solution to the Yang—Baxter equation in the form

Ri2(A, ur — u2)Ri3(X, ur — uz)Raz (A, uz — u3)
= Ra3(\,u2 —u3)Ri13(A, u1 —u3)Ria(A, u1 —uz2). (10)
Graphically:
us
= (10)

u3

u2 ul u2 Ul

Lecture tex model



Yang—Baxter equation: spectral parameter

The spectral parameters can be associated to lines:

€3

v
E3€
R\ u—v)32t = e2 €4
u

€1
This R matrix is the solution to the Yang—Baxter equation in the form
Ri2(A, ur — u2)Ri3(X, ur — uz)Raz (A, uz — u3)
= Ra3(\,u2 —u3)Riz(A, w1 — uz)Ri2(A u1 —uz).  (10)
Graphically:
u3
= (10')
u3
ug w1 u2 Ul

Besides, the R matrix satisfy the relations

b(w)ROA — u)5354 = R(w) ~%3,  Ris(w)Rai(—u) =1, R(0)=P = Jr .

£1€2 g4 —€71°
(11)
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Integrals of motion

We have
[T(uw), T(w)] =0 Yu,u'. (12)
But not all the integrals of motion 7'(u) are independent.
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Integrals of motion

We have

[T(u), T(w)] =0 Vu,u' (12)
But not all the integrals of motion 7'(u) are independent.
First of all, T'(0) is nothing but the shift operator:

wed—
vl

(13)
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Integrals of motion

We have

[T(u), T(w)] =0 Vu,u' (12)
But not all the integrals of motion 7'(u) are independent.
First of all, T'(0) is nothing but the shift operator:

wed—
vl

T(0) = I = I (13)
| |
| |
ek
u
Then decompose the product T—1(0)T(u) in wu:
> Houm™
TN O)T(w) =1 5 (14)
= n
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Integrals of motion

We have

[T(u), T(w)] =0 Vu,u' (12)
But not all the integrals of motion 7'(u) are independent.
First of all, T'(0) is nothing but the shift operator:

wed—
vl

T(0) = I = I (13)
| |
| |
u % dr
u
Then decompose the product T—1(0)T(u) in wu:
> Houm™
TN O)T(w) =1 5 (14)
n!
n=1
Hamiltonians H, commute with 7'(u) and mutually commute:
[T(0), Hp] = [Hm, Hn] =0 Vm,n. (15)

The set T(0), H1,...,Hyn_1 form a set of independent integrals of motion.
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Integrals of motion

We have

[T(u), T(w)] =0 Vu,u' (12)
But not all the integrals of motion 7'(u) are independent.
First of all, T'(0) is nothing but the shift operator:

U <
DI
T(0) = I = I (13)
| |
| |
u % dr
u
Then decompose the product T—1(0)T(u) in wu:
> Houm™
TN O)T(w) =1 5 (14)
n!
n=1
Hamiltonians H, commute with 7'(u) and mutually commute:
[T(0), Hp] = [Hm, Hn] =0 Vm,n. (15)

The set T(0), H1,...,Hyn_1 form a set of independent integrals of motion.
Operators H,, are local in the sense that each of them is a sum of term, which
involves a finite number (n + 1) of nelghborlng nodes.
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Six-vertex model and XXZ Heisenberg chain

Let us find the Hamiltonian H; explicitly:

— Hy =T710)T'(0) =
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Six-vertex model and XXZ Heisenberg chain

Let us find the Hamiltonian H; explicitly:

— Hy =T710)T'(0) =

0
(-

0 <
e
O«j

I I
u=0 ! !
| |
| |

du

:
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Six-vertex model and XXZ Heisenberg chain

Let us find the Hamiltonian H; explicitly:

3 R
SR il
0 <1 N

V41

— Hy =T710)T'(0) =

u=0p=1 Vn

ﬁ

0 - Lo
«lﬂ )

Lecture
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Six-vertex model and XXZ Heisenberg chain

Let us find the Hamiltonian H; explicitly:

o=t

— Hy =T710)T'(0) =
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Six-vertex model and XXZ Heisenberg chain

Let us find the Hamiltonian H; explicitly:

Vn m Vn :

— Hy =T710)T'(0) =
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Six-vertex model and XXZ Heisenberg chain

Let us find the Hamiltonian H; explicitly:

— Hy =T710)T'(0) =

i I I = i
du|y—o b P lu=on=3
N
where
a(u) b
R(u) = PR(u) = lca% 02173

Michael La

| |
Vnﬁj L V'n+2
V41 . d Vg1
Vn duly—o =] v, u
I I
oL R
N
= R;L,n+1(0)7
n=1
0
_ U cosA 1 2
=1 sin A 1 COS)\O +0(?)

tex model
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Six-vertex model and XXZ Heisenberg chain

We have

sin A

Rlu) =1 — (h+ ;) wt O@?),
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Six-vertex model and XXZ Heisenberg chain

We have

sin A

Rlu) =1 — (h+ ;) wt O@?),

where 1
h = —5(0‘” ®c”+0YRc¥ —cosAo® ®0c7).
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Six-vertex model and XXZ Heisenberg chain

We have
Ru)=1— - (h+ COSA) wt O(u2),
sin A 2
where 1
h = —5(0‘” ®c”+0YRc¥ —cosAo® ®0c7).
Hence

N
Hysin\ = Hxxyz + Ecos)\,
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Six-vertex model and XXZ Heisenberg chain

We have
Ru)=1— - (h+ COSA) wt O(u2),
sin A 2
where 1
h= —5(0‘” Qo+ Q0¥ —cosAo® ®c%).
Hence

N
Hysin\ = Hxxyz + 5 COS A,
where Hxxz is the Hamiltonian of the XXZ Heisenberg chain:
1 N
Hxxz = ~3 Z(Ufiaﬁﬁ +ofon iy +ATLon )
n=1

with A given by (9):

a2+b2702_ —Ccos A\
2ab T l—chX
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Six-vertex model and XXZ Heisenberg chain

We have
Ru)=1— - (h+ COSA) wt O(u2),
sin A 2
where 1
h= —5(0‘” Qo+ Q0¥ —cosAo® ®c%).
Hence

N
Hysin\ = Hxxyz + 5 COS A,
where Hxxz is the Hamiltonian of the XXZ Heisenberg chain:
1 N
Hxxz = 3 2(0202-5-1 +ofon iy +ATLon ) (16)
n=1

with A given by (9):

A a? +b%—¢? ) —cosA
- 2ab T l-chA

This leads to the identification of the space H and the quantum space of the six-
vertex model:

HN=V® --®V, vg=|%).
—_———
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XXZ Heisenberg chain: pseudovacuums

Due to the ice condition the z component of total spin

z 1 N z
§*=32> o
i=1

is a conserved charge:
[T(u), S7] = [Hxxz, 57] = 0. (17)

Thus the space of states is split into the sum over eigenvalues of S*.
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XXZ Heisenberg chain: pseudov

Due to the ice condition the z component of total spin

z 1 N z
§*=32> o
i=1

is a conserved charge:
[T(u), S7] = [Hxxz, 57] = 0. (17)

Thus the space of states is split into the sum over eigenvalues of S*.
Recall that

N NA
S*|Qx) = i5|9i>» Hxxz|Q%) = ——5 1)
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XXZ Heisenberg chain: pseudov

Due to the ice condition the z component of total spin

z 1 X z
S* = 52‘7”
i=1

is a conserved charge:
[T(u), S7] = [Hxxz, 57] = 0. (17)

Thus the space of states is split into the sum over eigenvalues of S*.
Recall that
N NA
S7Q) = £1Q4),  Hxxz|Qx) = ——— Q).

The action of the transfer matrix:

T (u)[$2+)
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XXZ Heisenberg chain: pseudov

Due to the ice condition the z component of total spin

z 1 X z
S* = 52‘7”
i=1

is a conserved charge:
[T(u), S7] = [Hxxz, 57] = 0. (17)

Thus the space of states is split into the sum over eigenvalues of S*.
Recall that

N NA
Sz|Qi> = i5|9:§:>7 HXXZ‘Q:H = _T|Q:I:>-

The action of the transfer matrix:

+ +
+ +

TW)) =3
= +
+ +
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XXZ Heisenberg chain: pseudov

Due to the ice condition the z component of total spin

z 1 X z
S* = 52‘7”
i=1

is a conserved charge:
[T(u), S7] = [Hxxz, 57] = 0. (17)

Thus the space of states is split into the sum over eigenvalues of S*.
Recall that

N NA
Sz|Qi> = i5|9:§:>7 HXXZ‘Q:H = _T|Q:I:>-

The action of the transfer matrix:

T (u)[$2+) = (@™ (uw) + 6N (w)|Q4).

I
+ o+ o+ o+

+ o+ o+ o+
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XXZ Heisenberg chain: pseudovacuums

Due to the ice condition the z component of total spin

z 1 N z
§*=32> o
i=1

is a conserved charge:
[T(u), S7] = [Hxxz, 57] = 0. (17)

Thus the space of states is split into the sum over eigenvalues of S*.
Recall that
N NA
S7Q) = £1Q4),  Hxxz|Qx) = ——— Q).

The action of the transfer matrix:

= (@™ (uw) + 6N (w)|Q4).

+ o+ o+ o+

Finally,
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Six-vertex model: three regimes

1. Ferroelectric regime: A > 0. Let a > b+ c.

Ground configurations:
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1. Ferroelectric regime: A > 0. Let a > b+ c. Excitations:

On a large lattice any excitations have vanishing weight. = Frozen order.
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Six-vertex model: three regimes

1. Ferroelectric regime: A > 0. Let a > b+ c. Excitations:

On a large lattice any excitations have vanishing weight. = Frozen order.
2. Antiferroelectric regime: A < —1, ¢ > a + b. Ground configurations:

I I e Bl I -1+ -1+
+ |- |+ |- -+ |- |+
ol -1+ -1+ I I e R I
- |+ |- |+ and + |- |+ |-
S B I I S B S N
+ |-+ |- -+ |-+
=1+ -1+ S B I
- Y+ Y- vy + Y- v+ Y-
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1. Ferroelectric regime: A > 0. Let a > b+ c. Excitations:

On a large lattice any excitations have vanishing weight. = Frozen order.
2. Antiferroelectric regime: A < —1, ¢ > a + b. Excitations?

I I e Bl I -1+ -1+
+ |- |+ |- -+ |- |+
ol -1+ -1+ I I e R I
- |+ |- |+ and + |- |+ |-
-+ L+ 1+ - S B S N
+ |-+ |- -+ |-+
=1+ -1+ S B I
- Y+ Y- vy + Y- v+ Y-
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1. Ferroelectric regime: A > 0. Let a > b+ c. Excitations:

On a large lattice any excitations have vanishing weight. = Frozen order.
2. Antiferroelectric regime: A < —1, ¢ > a + b. Excitations:

I I e Bl I -1+ -1+
+ |- |+ |- -+ |- |+

ol -l =1-1+ I I e R I
- - |+ |+ and + |- |+ |-

E I M S S B S N
+ |-+ |- -+ |-+

=1+ -1+ S B I
- Y+ Y- vy + Y- v+ Y-
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Six-vertex model: three regimes

1. Ferroelectric regime: A > 0. Let a > b+ c. Excitations:

On a large lattice any excitations have vanishing weight. = Frozen order.
2. Antiferroelectric regime: A < —1, ¢ > a + b. Excitations:

I I e Bl I -1+ -1+
+ |- |+ |- -+ |- |+

ol -l =1-1+ I I e R I
- - |+ |+ and + |- |+ |-

E I M S S B S N
+ |-+ |- -+ |-+

=1+ -1+ S B I
- Y+ Y- vy + Y- v+ Y-
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Six-vertex model: three regimes

1. Ferroelectric regime: A > 0. Let a > b+ c. Excitations:

+ o+ o+ - - - -
l++ [+ ]+ -l =-l=-1-1-
+ [+ |+ |- - |- |- |-
S I e D B N B
+ |+ |- |+ and - |- |- |-
ol =1 -]+ |+ o e B
-+ |+ |+ - |- - |-

On a large lattice any excitations have vanishing weight. = Frozen order.
2. Antiferroelectric regime: A < —1, ¢ > a + b. Excitations:

I I e Bl I -1+ -1+
+ |- |+ |- -+ |- |+

ol -l =1-1+ I I e R I
- - |+ |+ and + |- |+ |-

E I M S S B S N
+ |-+ |- -+ |-+

=1+ -1+ S B I
- Y+ Y- vy + Y- v+ Y-

The excitations have finite weight. = Nontrivial thermodynamics.
3. Disordered regime: |A] < 1. No ground configurations. It turns out that this
regime is always critical.
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